Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(03): 393-398
DOI: 10.1055/s-0039-1690010
DOI: 10.1055/s-0039-1690010
paper
Leaving Group Ability in Nucleophilic Aromatic Amination by Sodium Hydride–Lithium Iodide Composite
This work was supported by funding from Nanyang Technological University (NTU) (for S.C.), the Singapore Ministry of Education (Academic Research Fund Tier 1: RG10/17 for S.C.), and Japan Society for the Promotion of Science [Grant-in-Aid for Scientific Research (C) (19K0662)], Takeda Science Foundation, The FUGAKU Trust for Medicinal Research, and Uehara Memorial Foundation (for R.T.).Further Information
Publication History
Received: 30 June 2019
Accepted after revision: 16 July 2019
Publication Date:
24 July 2019 (online)
Abstract
The methoxy group is generally considered as a poor leaving group for nucleophilic substitution reactions. This work verified the superior ability of the methoxy group in nucleophilic amination of arenes mediated by the sodium hydride and lithium iodide through experimental and computational approaches.
Key words
nucleophilic amination - concerted aromatic substitution - methoxy group - sodium hydride - DFT calculationsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690010.
- Supporting Information
-
References
- 1a Brückner R. Organic Mechanisms: Reactions, Stereochemistry and Synthesis . Harmata M. Springer; Heidelberg: 2010. Chap. 2
- 1b Brückner R. Organic Mechanisms: Reactions, Stereochemistry and Synthesis . Harmata M. Springer; Heidelberg: 2010. Chap. 5
- 2 Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
- 3 For vicarious nucleophilic substitution, see: Błaziak K, Danikiewicz W, Mąkosza M. J. Am. Chem. Soc. 2016; 138: 7276; and references therein
- 4 For radical-nucleophilic aromatic substitution (SRN1), see: Rossi RA, Pierini AB, Peñeñory AB. Chem. Rev. 2003; 103: 71
- 5 For base-promoted homolytic aromatic substitution, see: Studer A, Curran DP. Nat. Chem. 2014; 6: 765
- 6 For nucleophilic aromatic substitution via SN1-type mechanism, see: Crespi S, Protti S, Fagnoni M. J. Org. Chem. 2016; 81: 9612
- 7 Kwan EE, Zeng Y, Besser HA, Jacobsen EN. Nat. Chem. 2018; 10: 917
- 8 For our review on cSNAr reactions, see: Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: in press; DOI: 10.1002/anie.201902216
- 9a Kaga A, Hayashi H, Hakamata H, Oi M, Uchiyama M, Takita R, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 11807
- 9b Pang JH, Kaga A, Chiba S. Chem. Commun. 2018; 54: 10324
- 10a Tobisu M, Shimasaki T, Chatani N. Chem. Lett. 2009; 38: 710
- 10b Tobisu M, Yasutome A, Yamakawa K, Shimasaki T, Chatani N. Tetrahedron 2012; 68: 5157
- 11 For amination of methoxyarenes via their cation radical intermediates generated under organic photoredox catalysis, see: Tay NE. S, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 16100
- 12 For nucleophilic amination of aryl iodides with magnesium amides via single-electron-transfer mechanism, see: Kiriyama K, Okkura K, Tamakuni F, Shirakawa E. Chem. Eur. J. 2018; 24: 4519
- 13 Ong DY, Tejo C, Xu K, Hirao H, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 1840
- 14 Masuya Y, Kawashima Y, Kodama T, Chatani N, Tobisu M. Synlett 2019; 30: in press; DOI: 10.1055/s-0037-1611974
- 15 We assumed that counter ion metathesis between NaH and LiI allows for generation of activated form of NaH, that possesses enhanced basicity to promote the present process. Our preliminary work on the materials characterization, see: Hong Z, Ong DY, Muduli SK, Too PC, Chan GH, Tnay YL, Chiba S, Nishiyama Y, Hirao H, Soo HS. Chem. Eur. J. 2016; 22: 7108
- 16 Pérez I, Sestelo JP, Sarandeses LA. J. Am. Chem. Soc. 2001; 123: 4155
- 17 Li J.-H, Liu W.-J. Org. Lett. 2004; 6: 2809
- 18 Kalvet I, Magni G, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 1581
- 19 Crisenza GE. M, Dauncey EM, Bower JF. Org. Biomol. Chem. 2016; 14: 5820
- 20 Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T. J. Org. Chem. 2009; 74: 1971
- 21 Burgos CH, Barder TE, Huang X, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 4321
- 22 Liu X, Zhang S. Synlett 2011; 268
- 23 Yong F.-F, Teo Y.-C, Yan Y.-K, Chua G.-L. Synlett 2012; 23: 101
- 24 Girard SA, Hu X, Knauber T, Zhou F, Simon M.-O, Deng G.-J, Li C.-J. Org. Lett. 2012; 14: 5606
- 25 Yasui K, Higashino M, Chatani N, Tobisu M. Synlett 2017; 28: 2569
- 26 Gauchot V, Lee A.-L. Chem. Commun. 2016; 52: 10163
- 27 Cao Q, Howard JL, Wheatley E, Browne DL. Angew. Chem. Int. Ed. 2018; 57: 11339
- 28 Lim C.-H, Kudisch M, Liu B, Miyake GM. J. Am. Chem. Soc. 2018; 140: 7667
- 29 Zhang J, Park S, Chang S. J. Am. Chem. Soc. 2018; 140: 13209
- 30 Fang Y, Zheng Y, Wang Z. Eur. J. Org. Chem. 2012; 1495
For Ni-catalyzed amination of methoxyarenes, see: