CC BY-NC-ND 4.0 · Journal of Morphological Sciences 2019; 36(03): 210-218
DOI: 10.1055/s-0039-1688810
Review Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Evaluation of the Impacts of Chemotherapeutics on Odontogenesis Process: Findings from a Systematic Review

Camila Valente Smith
1   Department of Morphology, Biological Sciences Institute, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
,
Grazyelle Sebrenski da Silva
1   Department of Morphology, Biological Sciences Institute, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
,
Felipe Rodolfo Pereira da Silva
1   Department of Morphology, Biological Sciences Institute, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
,
José Fernando Marques Barcellos
1   Department of Morphology, Biological Sciences Institute, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
,
Silvânia da Conceição Furtado
1   Department of Morphology, Biological Sciences Institute, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
› Author Affiliations
Further Information

Publication History

24 September 2018

28 March 2019

Publication Date:
08 August 2019 (online)

Abstract

This study aimed to examine and recognize the impacts of antinoplastic chemotherapeutics on the development of dental germ, employing a systematic review. A retrieving in the literature was carried out, using several medical and scientifical databases (ClinicalKey, Cochrane Library, Google Scholar, MedLine, PubMed, and ScienceDirect), by two investigators separately. In the end of this systematic search, eight articles met the required criteria for inclusion and, therefore, composed the results. Among these, four articles are about observational studies in humans, and the other four about experimental animal studies. In both cases and species, anomalies such as microdontia, hypodontia/agenesia, and root shortening were observed. The severity and frequency varied according to the nature of the chemotherapeutics applied as well as the administered dosage and the patient's age at the time of first exposure. Through the results, it was possible to show the direct impacts of chemotherapy on the odontogenesis process as well as factors such as the type of chemotherapy, the age of the individual at the time of first exposure and the dosage used. All of those should be taken into account when choosing a therapeutic protocol for an oncology patient. Besides, we observed the need for more studies in this area and that these should be standardized in order to allow an objective and direct analysis of comparable parameters, even when different approaches are used.

 
  • References

  • 1 NIH – NATIONAL CANCER INSTITUTE [Internet]. USA: 2015 February 9 [cited 2019 January 9]. Avaliable from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
  • 2 IARC – INTERNATIONAL AGENCY FOR RESEARCH ON CANCER [Internet]. 2017 [cited 2017 April 22]. Available from: http://globocan.iarc.fr/Default.aspx
  • 3 SOBOPE – Sociedade Brasileira de Oncologia Pediátrica [Internet]. São Paulo: 2017 [cited 2017 April 19]. Available from: http://www.sobope.org.br/
  • 4 Ribeiro AF, Souza CA. O cuidador familiar de doentes com câncer. Arq Ciências Saúde 2010; 17 (01) 22-26
  • 5 INCA – Instituto Nacional de Câncer [Internet]. Brazil: 2017 [cited 2017 February 22]. Available from: http://www.inca.gov.br/
  • 6 Gomes FC, Küstner EC, López JL. , et al. Manejo odontológico de las complicaciones de la radioterapia y quimioterapia en el cáncer oral. Med Oral 2003; 8: 178-187
  • 7 Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 2017; 83 (02) 255-268
  • 8 Bijnsdorp IV, Peters GJ, Temmink OH, Fukushima M, Kruyt FA. Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int J Cancer 2010; 126 (10) 2457-2468
  • 9 Estlin EJ, Lowis SP, Hall AG. Optimizing antimetabolite-based chemotherapy for the treatment of childhood acute lymphoblastic leukaemia. Br J Haematol 2000; 110 (01) 29-40
  • 10 Chu E, Sartorelli AC. Quimioterapia do Câncer. In: Katzung BG. , editor Farmacologia Básica&Clínica. Porto Alegre: AMGH; 2014: 949-75
  • 11 Hardman JG, Limbird LE. Goodman & Gilman: The Pharmacological Bases of Therapeutics. Rio de Janeiro: McGraw-Hill; 2005
  • 12 Snaeder W. Drug Discovery: A History. England: Jon Wiley & Sons Ltda; 2005
  • 13 Almeida VL, Leitão A, Reina LCB. , et al. Câncer e agentes antineoplásicos ciclo-celular específicos e ciclo-celular não específicos que interagem com o DNA: uma introdução. Quim Nova 2005; 28 (01) 118-129
  • 14 INCA – Instituto Nacional de Câncer. Ações de emfermagem para controle do cancer: uma proposta de integração ensino-serviço. Rio de Janeiro: INCA; 2008
  • 15 Goursand D, Borges CM, Alves KM. , et al. Sequelas bucais em crianças submetidas à terapia antineoplásica: causas e definição do papel do cirurgião dentista. Arq Odontol 2006; 42 (03) 180-189
  • 16 Carrillo CM, Corrêa FN, Lopes NN, Fava M, Odone Filho V. Dental anomalies in children submitted to antineoplastic therapy. Clinics (São Paulo) 2014; 69 (06) 433-437
  • 17 Kaste SC, Hopkins KP, Bowman LC, Santana VM. Dental abnormalities in children treated for neuroblastoma. Med Pediatr Oncol 1998; 30 (01) 22-27
  • 18 Leung W, Hudson MM, Strickland DK. , et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 2000; 18 (18) 3273-3279
  • 19 Pedersen LB, Clausen N, Schrøder H, Schmidt M, Poulsen S. Microdontia and hypodontia of premolars and permanent molars in childhood cancer survivors after chemotherapy. Int J Paediatr Dent 2012; 22 (04) 239-243
  • 20 Stawinska EK, Brożyna A, Dembowska-Bagińska B. , et al. Antineoplastic chemotherapy and congenital tooth abnormalities in children and adolescentes. Contemp Oncol 2016; 20 (05) 394-401
  • 21 Nunn JH, Welbury RR, Gordon PH, Kernahan J, Craft AW. Dental caries and dental anomalies in children treated by chemotherapy for malignant disease: a study in the north of England. Int J Paediatr Dent 1991; 1 (03) 131-135
  • 22 Rosenberg SW, Kolodney H, Wong GY, Murphy ML. Altered dental root development in long-term survivors of pediatric acute lymphoblastic leukemia. A review of 17 cases. Cancer 1987; 59 (09) 1640-1648
  • 23 Kaste SC, Hopkins KP, Jenkins III JJ. Abnormal odontogenesis in children treated with radiation and chemotherapy: imaging findings. AJR Am J Roentgenol 1994; 162 (06) 1407-1411
  • 24 Paucar GME. Efecto de la quimioterapia usada para el tratamiento de la leukemia linfoblástica aguda sobrre la odontogénesis en ratas. Estudio preliminar. CES Odontol 1997; 10 (01) 10
  • 25 Lyaruu DM, van Duin MA, Bervoets TJ, Wöltgens JH, Bronckers AL. Effects of vincristine on the developing hamster tooth germ in vitro. Connect Tissue Res 1995; 32 (1-4): 281-289
  • 26 Barbosa AM, Ribeiro DM, Caldo-Teixeira AS. , et al. Conhecimentos e práticas em saúde buccal com crianças hospitalizadas com cancer. Ciênc. Saúde Coletiva. 2010; 15 (01) 1113-1122
  • 27 Cossellu G, Seramondi R, Benedicenti S, Farronato G, Olivi G, Angiero F. Tooth developmental anomalies in severe combined immunodeficiency disease and juvenile myelomonocytic leukemia: common clinical features and treatment outcomes. Eur J Paediatr Dent 2013; 14 (04) 328-332
  • 28 UNIVERSITY LIBRARY [Internet]. Illinois: 2017 [cited 2017 December 23]. Available from http://researchguides.uic.edu/c.php?g=252338&p=3954402
  • 29 Moher D, Liberati A, Tetzlaff J, Altman DG. ; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6 (07) e1000097
  • 30 Higgins JPT, Altman DG, Gøtzsche PC. , et al; Cochrane Bias Methods Group; Cochrane Statistical Methods Group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928
  • 31 Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14 (43) 43
  • 32 Dahllöf G, Rozell B, Forsberg CM, Borgström B. Histologic changes in dental morphology induced by high dose chemotherapy and total body irradiation. Oral Surg Oral Med Oral Pathol 1994; 77 (01) 56-60
  • 33 Zwetchkenbaum SR, Oh WS. Prosthodontic management of abnormal tooth development secondary to chemoradiotherapy: a clinical report. J Prosthet Dent 2007; 98 (06) 429-435
  • 34 Nishimura S, Inada H, Sawa Y, Ishikawa H. Risk factors to cause tooth formation anomalies in chemotherapy of paediatric cancers. Eur J Cancer Care (Engl) 2013; 22 (03) 353-360
  • 35 Yamamoto T, Kita M, Mori M. , et al. Anti-tumor chemotherapeutic agents induce developmental disorders of tooth germ. J Oral Maxillofac Surg Med Pathol 2012; 24 (04) 208-212
  • 36 Adatia AK. Cytotoxicity of cyclophosphamide in the rat incisor. Br J Cancer 1975; 32 (02) 208-218
  • 37 Adatia AK, Berkovitz BKB. The effects of cyclophosphamide on eruption of the continuously growing mandibular incisor of the rat. Arch Oral Biol 1981; 26 (07) 607-613
  • 38 Kawakami T, Nakamura Y, Karibe H. Cyclophosphamide-Induced Morphological Changes in Dental Root Development of ICR Mice. PLoS One 2015; 10 (07) e0133256
  • 39 Vahlsing HL, Feringa ER, Britten AG, Kinning WK. Dental abnormalities in rats after a single large dose of cyclophosphamide. Cancer Res 1975; 35 (08) 2199-2202
  • 40 Gawade PL, Hudson MM, Kaste SC. , et al. A systematic review of dental late effects in survivors of childhood cancer. Pediatr Blood Cancer 2014; 61 (03) 407-416