Semin Liver Dis 2019; 39(04): 442-451
DOI: 10.1055/s-0039-1688502
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Macrophages as a Cell-Based Therapy for Liver Disease

Philip J. Starkey Lewis*
1   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
,
Francesca Moroni*
1   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
,
Stuart J. Forbes
1   MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
26. Juni 2019 (online)

Abstract

Liver failure arising from acute and chronic liver disease is an unmet clinical need that urgently requires novel therapeutic options in addition to orthotopic liver transplantation. Cell therapies offer new strategies to recover liver function through the reconstitution of healthy parenchyma and resolution of tissue pathology. Macrophages are professional phagocytes that comprise a key part of the innate immune system providing an important defense mechanism against invading pathogens. Macrophages are an inherently diverse cell type with respect to ontogeny, tissue distribution, phenotype, and function. The ability of macrophages to afford innate immunity, efficiently scavenge apoptotic/necrotic cells, and modulate local tissue microenvironment makes them an attractive cell therapy candidate for various diseases. This review aims to outline the rationale and utility of macrophages to serve as a potential cell therapy for liver disease.

* Philip J. Starkey Lewis and Francesca Moroni have equal contribution.


 
  • References

  • 1 Murray CJ, Richards MA, Newton JN. , et al. UK health performance: findings of the Global Burden of Disease Study 2010. Lancet 2013; 381 (9871): 997-1020
  • 2 Shiels MS, Chernyavskiy P, Anderson WF. , et al. Trends in premature mortality in the USA by sex, race, and ethnicity from 1999 to 2014: an analysis of death certificate data. Lancet 2017; 389 (10073): 1043-1054
  • 3 Leon DA, McCambridge J. Liver cirrhosis mortality rates in Britain from 1950 to 2002: an analysis of routine data. Lancet 2006; 367 (9504): 52-56
  • 4 Mokdad AA, Lopez AD, Shahraz S. , et al. Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med 2014; 12: 145
  • 5 Bernal W, Wendon J. Acute liver failure. N Engl J Med 2013; 369 (26) 2525-2534
  • 6 Lee WM. Acetaminophen (APAP) hepatotoxicity-Isn't it time for APAP to go away?. J Hepatol 2017; 67 (06) 1324-1331
  • 7 Goldberg D, French B, Trotter J. , et al. Underreporting of liver transplant waitlist removals due to death or clinical deterioration: results at four major centers. Transplantation 2013; 96 (02) 211-216
  • 8 D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 2006; 44 (01) 217-231
  • 9 Matas AJ, Sutherland DE, Steffes MW. , et al. Hepatocellular transplantation for metabolic deficiencies: decrease of plasms bilirubin in Gunn rats. Science 1976; 192 (4242): 892-894
  • 10 Fox IJ, Chowdhury JR, Kaufman SS. , et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 1998; 338 (20) 1422-1426
  • 11 Sokal EM, Smets F, Bourgois A. , et al. Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 2003; 76 (04) 735-738
  • 12 Strom SC, Fisher RA, Thompson MT. , et al. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation 1997; 63 (04) 559-569
  • 13 Bilir BM, Guinette D, Karrer F. , et al. Hepatocyte transplantation in acute liver failure. Liver Transpl 2000; 6 (01) 32-40
  • 14 Weber A, Groyer-Picard MT, Franco D, Dagher I. Hepatocyte transplantation in animal models. Liver Transpl 2009; 15 (01) 7-14
  • 15 Joseph B, Malhi H, Bhargava KK, Palestro CJ, McCuskey RS, Gupta S. Kupffer cells participate in early clearance of syngeneic hepatocytes transplanted in the rat liver. Gastroenterology 2002; 123 (05) 1677-1685
  • 16 Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In vitro generated hepatocyte-like cells: a novel tool in regenerative medicine and drug discovery. Cell J 2017; 19 (02) 204-217
  • 17 Zhang K, Zhang L, Liu W. , et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 2018; 23 (06) 806-819.e4
  • 18 Sullivan GJ, Hay DC, Park IH. , et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 2010; 51 (01) 329-335
  • 19 Si-Tayeb K, Noto FK, Nagaoka M. , et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 2010; 51 (01) 297-305
  • 20 Takayama K, Akita N, Mimura N. , et al. Generation of safe and therapeutically effective human induced pluripotent stem cell-derived hepatocyte-like cells for regenerative medicine. Hepatol Commun 2017; 1 (10) 1058-1069
  • 21 Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med 2011; 3 (82) 82ra39
  • 22 Kokudo N, Otsu I, Okazaki T. , et al. Long-term effects of intrasplenically transplanted adult hepatocytes and fetal liver in hyperbilirubinemic Gunn rats. Transpl Int 1995; 8 (04) 262-267
  • 23 Lilja H, Arkadopoulos N, Blanc P. , et al. Fetal rat hepatocytes: isolation, characterization, and transplantation in the Nagase analbuminemic rats. Transplantation 1997; 64 (09) 1240-1248
  • 24 Habibullah CM, Syed IH, Qamar A, Taher-Uz Z. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 1994; 58 (08) 951-952
  • 25 Mito M, Kusano M, Kawaura Y. Hepatocyte transplantation in man. Transplant Proc 1992; 24 (06) 3052-3053
  • 26 Hansel MC, Gramignoli R, Skvorak KJ. , et al. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. Curr Protoc Toxicol 2014; 62: 14
  • 27 Susick R, Moss N, Kubota H. , et al. Hepatic progenitors and strategies for liver cell therapies. Ann N Y Acad Sci 2001; 944: 398-419
  • 28 Nevi L, Carpino G, Costantini D. , et al. Hyaluronan coating improves liver engraftment of transplanted human biliary tree stem/progenitor cells. Stem Cell Res Ther 2017; 8 (01) 68
  • 29 Semeraro R, Carpino G, Cardinale V. , et al. Multipotent stem/progenitor cells in the human foetal biliary tree. J Hepatol 2012; 57 (05) 987-994
  • 30 Cardinale V, Carpino G, Gentile R. , et al. Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis. BMC Gastroenterol 2014; 14: 204
  • 31 Yovchev MI, Xue Y, Shafritz DA, Locker J, Oertel M. Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes. Hepatology 2014; 59 (01) 284-295
  • 32 Oertel M, Menthena A, Chen YQ, Shafritz DA. Properties of cryopreserved fetal liver stem/progenitor cells that exhibit long-term repopulation of the normal rat liver. Stem Cells 2006; 24 (10) 2244-2251
  • 33 Theise ND, Nimmakayalu M, Gardner R. , et al. Liver from bone marrow in humans. Hepatology 2000; 32 (01) 11-16
  • 34 Moore JK, Stutchfield BM, Forbes SJ. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther 2014; 39 (07) 673-685
  • 35 Czyz J, Wiese C, Rolletschek A, Blyszczuk P, Cross M, Wobus AM. Potential of embryonic and adult stem cells in vitro. Biol Chem 2003; 384 (10-11): 1391-1409
  • 36 Lyra AC, Soares MB, da Silva LF. , et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur J Gastroenterol Hepatol 2010; 22 (01) 33-42
  • 37 Newsome PN, Fox R, King AL. , et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol 2018; 3 (01) 25-36
  • 38 Chen AK, Reuveny S, Oh SK. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv 2013; 31 (07) 1032-1046
  • 39 Pittenger MF, Mackay AM, Beck SC. , et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143-147
  • 40 Ji R, Zhang N, You N. , et al. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 2012; 33 (35) 8995-9008
  • 41 Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107 (04) 1484-1490
  • 42 Jung J, Choi JH, Lee Y. , et al. Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells 2013; 31 (08) 1584-1596
  • 43 Zhu X, He B, Zhou X, Ren J. Effects of transplanted bone-marrow-derived mesenchymal stem cells in animal models of acute hepatitis. Cell Tissue Res 2013; 351 (03) 477-486
  • 44 Kanazawa H, Fujimoto Y, Teratani T. , et al. Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model. PLoS One 2011; 6 (04) e19195
  • 45 Salomone F, Barbagallo I, Puzzo L, Piazza C, Li Volti G. Efficacy of adipose tissue-mesenchymal stem cell transplantation in rats with acetaminophen liver injury. Stem Cell Res (Amst) 2013; 11 (03) 1037-1044
  • 46 Zhang Z, Lin H, Shi M. , et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol 2012; 27 (Suppl. 02) 112-120
  • 47 Owen A, Newsome PN. Mesenchymal stromal cell therapy in liver disease: opportunities and lessons to be learnt?. Am J Physiol Gastrointest Liver Physiol 2015; 309 (10) G791-G800
  • 48 Shi M, Zhang Z, Xu R. , et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 2012; 1 (10) 725-731
  • 49 Mohamadnejad M, Alimoghaddam K, Bagheri M. , et al. Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int 2013; 33 (10) 1490-1496
  • 50 Zhao L, Chen S, Shi X, Cao H, Li L. A pooled analysis of mesenchymal stem cell-based therapy for liver disease. Stem Cell Res Ther 2018; 9 (01) 72
  • 51 Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol 2015; 62 (1, Suppl): S157-S169
  • 52 Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo Clin Proc 2014; 89 (03) 414-424
  • 53 El-Ansary M, Abdel-Aziz I, Mogawer S. , et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev 2012; 8 (03) 972-981
  • 54 Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006; 26 (10) 1175-1186
  • 55 Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13 (03) 316-327
  • 56 Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47 (02) 729-736
  • 57 Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol 2013; 3 (02) 785-797
  • 58 Radi ZA, Koza-Taylor PH, Bell RR. , et al. Increased serum enzyme levels associated with Kupffer cell reduction with no signs of hepatic or skeletal muscle injury. Am J Pathol 2011; 179 (01) 240-247
  • 59 Martin-Murphy BV, Holt MP, Ju C. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol Lett 2010; 192 (03) 387-394
  • 60 Dambach DM, Watson LM, Gray KR, Durham SK, Laskin DL. Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology 2002; 35 (05) 1093-1103
  • 61 Canalese J, Gove CD, Gimson AE, Wilkinson SP, Wardle EN, Williams R. Reticuloendothelial system and hepatocytic function in fulminant hepatic failure. Gut 1982; 23 (04) 265-269
  • 62 Zigmond E, Samia-Grinberg S, Pasmanik-Chor M. , et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J Immunol 2014; 193 (01) 344-353
  • 63 Craig DG, Reid TW, Martin KG, Davidson JS, Hayes PC, Simpson KJ. The systemic inflammatory response syndrome and sequential organ failure assessment scores are effective triage markers following paracetamol (acetaminophen) overdose. Aliment Pharmacol Ther 2011; 34 (02) 219-228
  • 64 Fernández J, Acevedo J, Wiest R. , et al; European Foundation for the Study of Chronic Liver Failure. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 2018; 67 (10) 1870-1880
  • 65 Rimola A, Soto R, Bory F, Arroyo V, Piera C, Rodes J. Reticuloendothelial system phagocytic activity in cirrhosis and its relation to bacterial infections and prognosis. Hepatology 1984; 4 (01) 53-58
  • 66 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
  • 67 Wen G, Zhang C, Chen Q. , et al. A novel role of matrix metalloproteinase-8 in macrophage differentiation and polarization. J Biol Chem 2015; 290 (31) 19158-19172
  • 68 Steenport M, Khan KM, Du B, Barnhard SE, Dannenberg AJ, Falcone DJ. Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2. J Immunol 2009; 183 (12) 8119-8127
  • 69 Bellac CL, Dufour A, Krisinger MJ. , et al. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis. Cell Reports 2014; 9 (02) 618-632
  • 70 Fallowfield JA, Mizuno M, Kendall TJ. , et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007; 178 (08) 5288-5295
  • 71 Newby AC. Metalloproteinase production from macrophages - a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Exp Physiol 2016; 101 (11) 1327-1337
  • 72 Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol 2015; 44-46: 224-231
  • 73 Madsen DH, Leonard D, Masedunskas A. , et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 2013; 202 (06) 951-966
  • 74 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14 (03) 181-194
  • 75 Surewaard BG, Deniset JF, Zemp FJ. , et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J Exp Med 2016; 213 (07) 1141-1151
  • 76 Melgert BN, Olinga P, Van Der Laan JM. , et al. Targeting dexamethasone to Kupffer cells: effects on liver inflammation and fibrosis in rats. Hepatology 2001; 34 (4 Pt 1): 719-728
  • 77 Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol 2017; 66 (06) 1300-1312
  • 78 Thomas JA, Pope C, Wojtacha D. , et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 2011; 53 (06) 2003-2015
  • 79 Ma PF, Gao CC, Yi J. , et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol 2017; 67 (04) 770-779
  • 80 Haideri SS, McKinnon AC, Taylor AH. , et al. Injection of embryonic stem cell derived macrophages ameliorates fibrosis in a murine model of liver injury. NPJ Regen Med 2017; 2 (01) 14
  • 81 Moore JK, Mackinnon AC, Wojtacha D. , et al. Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study. Cytotherapy 2015; 17 (11) 1604-1616
  • 82 Heymann F, Hammerich L, Storch D. , et al. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology 2012; 55 (03) 898-909
  • 83 Mossanen JC, Krenkel O, Ergen C. , et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 2016; 64 (05) 1667-1682
  • 84 Fraser AR, Pass C, Burgoyne P. , et al. Development, functional characterization and validation of methodology for GMP-compliant manufacture of phagocytic macrophages: a novel cellular therapeutic for liver cirrhosis. Cytotherapy 2017; 19 (09) 1113-1124
  • 85 Scott RS, McMahon EJ, Pop SM. , et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 2001; 411 (6834): 207-211
  • 86 Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000; 405 (6782): 85-90
  • 87 Karlsson A, Christenson K, Matlak M. , et al. Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 2009; 19 (01) 16-20
  • 88 Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci U S A 1996; 93 (22) 12456-12460
  • 89 deCathelineau AM, Henson PM. The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 2003; 39: 105-117
  • 90 Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev 2016; 273 (01) 357-370
  • 91 James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 2003; 31 (12) 1499-1506
  • 92 Prescott LF, Park J, Ballantyne A, Adriaenssens P, Proudfoot AT. Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet 1977; 2 (8035): 432-434
  • 93 Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis?. Toxicol Sci 2002; 67 (02) 322-328
  • 94 Dragomir AC, Laskin JD, Laskin DL. Macrophage activation by factors released from acetaminophen-injured hepatocytes: potential role of HMGB1. Toxicol Appl Pharmacol 2011; 253 (03) 170-177
  • 95 Sierro F, Evrard M, Rizzetto S. , et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 2017; 47 (02) 374-388.e6
  • 96 Rolando N, Philpott-Howard J, Williams R. Bacterial and fungal infection in acute liver failure. Semin Liver Dis 1996; 16 (04) 389-402
  • 97 Rolando N, Harvey F, Brahm J. , et al. Prospective study of bacterial infection in acute liver failure: an analysis of fifty patients. Hepatology 1990; 11 (01) 49-53
  • 98 Rolando N, Harvey F, Brahm J. , et al. Fungal infection: a common, unrecognised complication of acute liver failure. J Hepatol 1991; 12 (01) 1-9
  • 99 Karvellas CJ, Cavazos J, Battenhouse H. , et al; US Acute Liver Failure Study Group. Effects of antimicrobial prophylaxis and blood stream infections in patients with acute liver failure: a retrospective cohort study. Clin Gastroenterol Hepatol 2014; 12 (11) 1942-9.e1
  • 100 Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J, Williams R. The systemic inflammatory response syndrome in acute liver failure. Hepatology 2000; 32 (4 Pt 1): 734-739
  • 101 Possamai LA, Thursz MR, Wendon JA, Antoniades CG. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J Hepatol 2014; 61 (02) 439-445
  • 102 Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 2014; 6 (06) a021857
  • 103 Stutchfield BM, Antoine DJ, Mackinnon AC. , et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology 2015; 149 (07) 1896-1909.e14
  • 104 Holt MP, Yin H, Ju C. Exacerbation of acetaminophen-induced disturbances of liver sinusoidal endothelial cells in the absence of Kupffer cells in mice. Toxicol Lett 2010; 194 (1-2): 34-41
  • 105 You Q, Holt M, Yin H, Li G, Hu CJ, Ju C. Role of hepatic resident and infiltrating macrophages in liver repair after acute injury. Biochem Pharmacol 2013; 86 (06) 836-843
  • 106 Holt MP, Cheng L, Ju C. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J Leukoc Biol 2008; 84 (06) 1410-1421
  • 107 Ju C, Reilly TP, Bourdi M. , et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 2002; 15 (12) 1504-1513
  • 108 Bourdi M, Masubuchi Y, Reilly TP. , et al. Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 2002; 35 (02) 289-298
  • 109 Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22 (02) 226-229
  • 110 Ehling J, Bartneck M, Wei X. , et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 2014; 63 (12) 1960-1971
  • 111 Boulter L, Guest RV, Kendall TJ. , et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest 2015; 125 (03) 1269-1285
  • 112 Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. Endothelial Wnts regulate β-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt-Wnt situation. Hepatol Commun 2018; 2 (07) 845-860
  • 113 Yang J, Mowry LE, Nejak-Bowen KN. , et al. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation!. Hepatology 2014; 60 (03) 964-976
  • 114 Mukaro VR, Bylund J, Hodge G. , et al. Lectins offer new perspectives in the development of macrophage-targeted therapies for COPD/emphysema. PLoS One 2013; 8 (02) e56147
  • 115 Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13
  • 116 Liu HC, Zheng MH, Du YL. , et al. N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol 2012; 278 (1-2): 84-90
  • 117 Chinetti-Gbaguidi G, Baron M, Bouhlel MA. , et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ Res 2011; 108 (08) 985-995
  • 118 Mendoza-Coronel E, Ortega E. Macrophage polarization modulates FcγR- and CD13-mediated phagocytosis and reactive oxygen species production, independently of receptor membrane expression. Front Immunol 2017; 8: 303
  • 119 Gautier EL, Shay T, Miller J. , et al; Immunological Genome Consortium. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 2012; 13 (11) 1118-1128
  • 120 Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989; 245 (4920): 855-857
  • 121 Zhan Y, Paolicelli RC, Sforazzini F. , et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 2014; 17 (03) 400-406
  • 122 Terpstra V, van Berkel TJ. Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 2000; 95 (06) 2157-2163
  • 123 Scott CL, Zheng F, De Baetselier P. , et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7: 10321
  • 124 Sheng J, Ruedl C, Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 2015; 43 (02) 382-393
  • 125 Gomez Perdiguero E, Klapproth K, Schulz C. , et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518 (7540): 547-551
  • 126 Moore JK, MacKinnon AC, Man TY, Manning JR, Forbes SJ, Simpson KJ. Patients with the worst outcomes after paracetamol (acetaminophen)-induced liver failure have an early monocytopenia. Aliment Pharmacol Ther 2017; 45 (03) 443-454