CC BY 4.0 · J Brachial Plex Peripher Nerve Inj 2019; 14(01): e16-e23
DOI: 10.1055/s-0039-1687913
Original Contribution
Georg Thieme Verlag KG Stuttgart · New York

Evaluation of Brachial Plexus Using Combined Stereological Techniques of Diffusion Tensor Imaging and Fiber Tracking

Niyazi Acer
1   Department of Anatomy, Erciyes University School of Medicine, Kayseri, Turkey
,
Mehmet Turgut
2   Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey
3   Department of Histology and Embryology, Adnan Menderes University Health Sciences Institute, Aydın, Turkey
› Author Affiliations
Funding None.
Further Information

Publication History

11 December 2018

18 February 2019

Publication Date:
12 June 2019 (online)

Abstract

Background Brachial plexus (BP) is composed of intercommunications among the ventral roots of the nerves C5, C6, C7, C8, and T1 in the neck. The in vivo and in vitro evaluation of axons of the peripheral nervous system is performed using different techniques. Recently, many studies describing the application of fiber tractography and stereological axon number estimation to peripheral nerves have been published.

Methods Various quantitative parameters of nerve fibers, including axon number, density, axonal area, and myelin thickness, can be estimated using stereological techniques. In vivo three-dimensional reconstruction of axons of BP can be visualized using a combined technique of diffusion tensor imaging (DTI) and fiber tracking with the potential to evaluate nerve fiber content.

Conclusion It is concluded that terminal branches of BP can be successfully visualized using DTI, which is a highly reproducible method for the evaluation of BP as it shows anatomical and functional features of neural structures. We believe that quantitative morphological findings obtained from BP will be useful for new experimental, developmental, and pathological studies in the future.

 
  • References

  • 1 Fazan VPS, Amadeu AS, Caleffi AL, Rodrigues Filho OA. Brachial plexus variations in its formation and main branches. Acta Cir Bras 2003; 18: 14-18
  • 2 Leinberry CF, Wehbé MA. Brachial plexus anatomy. Hand Clin 2004; 20 (01) 1-5
  • 3 Standring Sed. Gray's Anatomy: The Anatomical Basis of Clinical Practice. Edinburgh: Elsevier Health Sciences; 2005
  • 4 Snell RS. Clinical Anatomy. 7th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2004
  • 5 Singh R. Variations of cords of brachial plexus and branching pattern of nerves emanating from them. J Craniofac Surg 2017; 28 (02) 543-547
  • 6 Leffert RD. Brachial Plexus Injuries. New York, NY: Churchill Livingstone; 1985
  • 7 Goel S, Rustagi SM, Kumar A, Mehta V, Suri RK. Multiple unilateral variations in medial and lateral cords of brachial plexus and their branches. Anat Cell Biol 2014; 47 (01) 77-80
  • 8 Aggarwal A, Harjeet K, Sahni D, Aggarwal A. Bilateral multiple complex variations in the formation and branching pattern of brachial plexus. Surg Radiol Anat 2009; 31 (09) 723-731
  • 9 Pandey SK, Shukla VK. Anatomical variations of the cords of brachial plexus and the median nerve. Clin Anat 2007; 20 (02) 150-156
  • 10 Orebaugh SL, Williams BA. Brachial plexus anatomy: normal and variant. Scientific World Journal 2009; 9: 300-312
  • 11 Venieratos D, Anagnostopoulou S. Classification of communications between the musculocutaneous and median nerves. Clin Anat 1998; 11 (05) 327-331
  • 12 El Falougy H, Selmeciova P, Kubikova E, Stenova J, Haviarova Z. The variable communicating branches between musculocutaneous and median nerves: a morphological study with clinical implications. Bratisl Lek Listy 2013; 114 (05) 290-294
  • 13 Jager SB, Ronchi G, Vaegter CB, Geuna S. The mouse median nerve experimental model in regenerative research. BioMed Res Int 2014; 2014: 701682
  • 14 Sauter AR, Smith HJ, Stubhaug A, Dodgson MS, Klaastad Ø. Use of magnetic resonance imaging to define the anatomical location closest to all three cords of the infraclavicular brachial plexus. Anesth Analg 2006; 103 (06) 1574-1576
  • 15 Meek MF, Stenekes MW, Hoogduin HM, Nicolai J-PA. In vivo three-dimensional reconstruction of human median nerves by diffusion tensor imaging. Exp Neurol 2006; 198 (02) 479-482
  • 16 Canan S, Aktaş A, Ulkay MB. , et al. Prenatal exposure to a non-steroidal anti-inflammatory drug or saline solution impairs sciatic nerve morphology: a stereological and histological study. Int J Dev Neurosci 2008; 26 (07) 733-738
  • 17 Turgut M, Kaplan S, Unal BZ. , et al. Stereological analysis of sciatic nerve in chickens following neonatal pinealectomy: an experimental study. J Brachial Plex Peripher Nerve Inj 2010; 5: 10
  • 18 Oguz I, Yaxley R, Budin F. , et al. Comparison of magnetic resonance imaging in live vs. post mortem rat brains. PLoS One 2013; 8 (08) e71027
  • 19 Lehmann HC, Zhang J, Mori S, Sheikh KA. Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. Exp Neurol 2010; 223 (01) 238-244
  • 20 West MJ. Introduction to Stereology. New York, NY: Cold Spring Harbor; 2012
  • 21 Kaplan S, Geuna S, Ronchi G, Ulkay MB, von Bartheld CS. Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: a multicenter study. J Neurosci Methods 2010; 187 (01) 90-99
  • 22 Larsen JO. Stereology of nerve cross sections. J Neurosci Methods 1998; 85 (01) 107-118
  • 23 Mayhew TM. An efficient sampling scheme for estimating fibre number from nerve cross sections: the fractionator. J Anat 1988; 157: 127-134
  • 24 Gundersen HJ. Estimators of the number of objects per area unbiased by edge effects. Microsc Acta 1978; 81 (02) 107-117
  • 25 Canan S, Bozkurt HH, Acar M. , et al. An efficient stereological sampling approach for quantitative assessment of nerve regeneration. Neuropathol Appl Neurobiol 2008; 34 (06) 638-649
  • 26 Geuna S. Appreciating the difference between design-based and model-based sampling strategies in quantitative morphology of the nervous system. J Comp Neurol 2000; 427 (03) 333-339
  • 27 Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45 (02) 265-269
  • 28 Mori S, Kaufmann WE, Davatzikos C. , et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 2002; 47 (02) 215-223
  • 29 Mori S, van Zijl PC. Fiber tracking: principles and strategies - a technical review. NMR Biomed 2002; 15 (7-8): 468-480
  • 30 Izbudak I, Acer N, Poretti A, Gumus K, Zararsiz G. Macrocerebellum: volumetric and diffusion tensor imaging analysis. Turk Neurosurg 2015; 25 (06) 948-953
  • 31 Acer N, Bastepe-Gray S, Sagiroglu A. , et al. Diffusion tensor and volumetric magnetic resonance imaging findings in the brains of professional musicians. J Chem Neuroanat 2018; 88: 33-40
  • 32 Filler AG, Maravilla KR, Tsuruda JS. MR neurography and muscle MR imaging for image diagnosis of disorders affecting the peripheral nerves and musculature. Neurol Clin 2004; 22 (03) 643-682 , vi–vii
  • 33 Skorpil M, Engström M, Nordell A. Diffusion-direction-dependent imaging: a novel MRI approach for peripheral nerve imaging. Magn Reson Imaging 2007; 25 (03) 406-411
  • 34 Takagi T, Nakamura M, Yamada M. , et al. Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 2009; 44 (03) 884-892
  • 35 Sun S-W, Liang H-F, Cross AH, Song S-K. Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. Neuroimage 2008; 40 (01) 1-10
  • 36 Zhou Y, Kumaravel M, Patel VS, Sheikh KA, Narayana PA. Diffusion tensor imaging of forearm nerves in humans. J Magn Reson Imaging 2012; 36 (04) 920-927
  • 37 Zhou Y, Narayana PA, Kumaravel M, Athar P, Patel VS, Sheikh KA. High resolution diffusion tensor imaging of human nerves in forearm. J Magn Reson Imaging 2014; 39 (06) 1374-1383
  • 38 Bilgen M. Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI. BMC Med Imaging 2006; 6: 15
  • 39 Acer N, Dolu N, Zararsiz G. , et al. Anatomical characterization of ADHD using an atlas-based analysis: a diffusion tensor imaging study. Eurobiotech Journal 2017; 1: 46-56
  • 40 Bammer R, Acar B, Moseley ME. In vivo MR tractography using diffusion imaging. Eur J Radiol 2003; 45 (03) 223-234
  • 41 Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 2002; 15 (7-8): 435-455
  • 42 Bodensteiner JB, Schaefer GB, Keller GM, Thompson JN, Bowen MK. Macrocerebellum: neuroimaging and clinical features of a newly recognized condition. J Child Neurol 1997; 12 (06) 365-368
  • 43 Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics 2007; 4 (03) 316-329
  • 44 Conturo TE, Lori NF, Cull TS. , et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999; 96 (18) 10422-10427
  • 45 Jiang H, van Zijl PCM, Kim J, Pearlson GD, Mori S. DTIStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 2006; 81 (02) 106-116
  • 46 Chuang N, Mori S, Yamamoto A. , et al. An MRI-based atlas and database of the developing mouse brain. Neuroimage 2011; 54 (01) 80-89
  • 47 Guggenberger R, Eppenberger P, Markovic D. , et al. MR neurography of the median nerve at 3.0T: optimization of diffusion tensor imaging and fiber tractography. Eur J Radiol 2012; 81 (07) e775-e782
  • 48 Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA. Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cent Eur Neurosurg 2009; 70 (01) 27-35
  • 49 Ohana M, Moser T, Meyer N, Zorn PE, Liverneaux P, Dietemann JL. 3T tractography of the median nerve: optimisation of acquisition parameters and normative diffusion values. Diagn Interv Imaging 2012; 93 (10) 775-784
  • 50 Wakana S, Caprihan A, Panzenboeck MM. , et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007; 36 (03) 630-644
  • 51 Gasparotti R, Lodoli G, Meoded A, Carletti F, Garozzo D, Ferraresi S. Feasibility of diffusion tensor tractography of brachial plexus injuries at 1.5 T. Invest Radiol 2013; 48 (02) 104-112
  • 52 Tagliafico A, Calabrese M, Puntoni M. , et al. Brachial plexus MR imaging: accuracy and reproducibility of DTI-derived measurements and fibre tractography at 3.0-T. Eur Radiol 2011; 21 (08) 1764-1771
  • 53 Ho MJ, Manoliu A, Kuhn FP. , et al. Evaluation of reproducibility of diffusion tensor imaging in the brachial plexus at 3.0 T. Invest Radiol 2017; 52 (08) 482-487
  • 54 Kabakci N, Gürses B, Firat Z. , et al. Diffusion tensor imaging and tractography of median nerve: normative diffusion values. AJR Am J Roentgenol 2007; 189 (04) 923-927
  • 55 Barcelo C, Faruch M, Lapègue F, Bayol MA, Sans N. 3-T MRI with diffusion tensor imaging and tractography of the median nerve. Eur Radiol 2013; 23 (11) 3124-3130
  • 56 Stein D, Neufeld A, Pasternak O. , et al. Diffusion tensor imaging of the median nerve in healthy and carpal tunnel syndrome subjects. J Magn Reson Imaging 2009; 29 (03) 657-662
  • 57 Oudeman J, Verhamme C, Engbersen MP. , et al. Diffusion tensor MRI of the healthy brachial plexus. PLoS One 2018; 13 (05) e0196975
  • 58 Chhabra A, Thakkar RS, Andreisek G. , et al. Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 2013; 34 (04) 802-807
  • 59 Vargas MI, Viallon M, Nguyen D, Delavelle J, Becker M. Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions. Neuroradiology 2010; 52 (03) 237-245