Thromb Haemost 2019; 119(08): 1212-1221
DOI: 10.1055/s-0039-1687877
Theme Issue Article
Georg Thieme Verlag KG Stuttgart · New York

Btk Inhibitors as First Oral Atherothrombosis-Selective Antiplatelet Drugs?

Kristina Busygina
1   Institute for Prevention of Cardiovascular Diseases, LMU (Ludwig-Maximilians University Munich), Munich, Germany
,
Viola Denzinger
1   Institute for Prevention of Cardiovascular Diseases, LMU (Ludwig-Maximilians University Munich), Munich, Germany
,
Isabell Bernlochner
2   Medizinische Klinik und Poliklinik I, Klinikum rechts der Isar, Medizinische Fakultät, Technische Universität München, Munich, Germany
,
Christian Weber
1   Institute for Prevention of Cardiovascular Diseases, LMU (Ludwig-Maximilians University Munich), Munich, Germany
3   DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
4   Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
,
Reinhard Lorenz
1   Institute for Prevention of Cardiovascular Diseases, LMU (Ludwig-Maximilians University Munich), Munich, Germany
,
Wolfgang Siess
1   Institute for Prevention of Cardiovascular Diseases, LMU (Ludwig-Maximilians University Munich), Munich, Germany
3   DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
› Institutsangaben
Funding This study was supported by grants from the Deutsche Forschungsgemeinschaft (SFB1123/B08) and the August-Lenz foundation.
Weitere Informationen

Publikationsverlauf

29. September 2018

09. März 2019

Publikationsdatum:
14. Mai 2019 (online)

Abstract

Bruton's tyrosine kinase (Btk) is essential for B cell differentiation and proliferation, but also platelets express Btk. Patients with X-linked agammaglobulinemia due to hereditary Btk deficiency do not show bleeding, but a mild bleeding tendency is observed in high dose therapy of B-cell malignancies with ibrutinib and novel second-generation irreversible Btk inhibitors (acalabrutinib and ONO/GS-4059). This review discusses recent studies that may explain this apparent paradox and gives mechanistic insights that suggest a unique potential of low dose irreversible Btk inhibitors as atherothrombosis-focused antiplatelet drugs.

 
  • References

  • 1 Fernández-Ortiz A, Badimon JJ, Falk E. , et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23 (07) 1562-1569
  • 2 Toschi V, Gallo R, Lettino M. , et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 1997; 95 (03) 594-599
  • 3 van Zanten GH, de Graaf S, Slootweg PJ. , et al. Increased platelet deposition on atherosclerotic coronary arteries. J Clin Invest 1994; 93 (02) 615-632
  • 4 Penz S, Reininger AJ, Brandl R. , et al. Human atheromatous plaques stimulate thrombus formation by activating platelet glycoprotein VI. FASEB J 2005; 19 (08) 898-909
  • 5 Reininger AJ, Bernlochner I, Penz SM. , et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol 2010; 55 (11) 1147-1158
  • 6 Schulz C, Penz S, Hoffmann C. , et al. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. Basic Res Cardiol 2008; 103 (04) 356-367
  • 7 Siess W, Zangl KJ, Essler M. , et al. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A 1999; 96 (12) 6931-6936
  • 8 Badimon JJ, Lettino M, Toschi V. , et al. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 1999; 99 (14) 1780-1787
  • 9 Bonaca MP, Bhatt DL, Cohen M. , et al; PEGASUS-TIMI 54 Steering Committee and Investigators. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med 2015; 372 (19) 1791-1800
  • 10 Johnston SC, Amarenco P, Albers GW. , et al; SOCRATES Steering Committee and Investigators. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N Engl J Med 2016; 375 (01) 35-43
  • 11 Katsuda S, Kaji T. Atherosclerosis and extracellular matrix. J Atheroscler Thromb 2003; 10 (05) 267-274
  • 12 Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114 (12) 1852-1866
  • 13 Libby P. Inflammation in atherosclerosis. Nature 2002; 420 (6917): 868-874
  • 14 Bode MK, Mosorin M, Satta J, Risteli L, Juvonen T, Risteli J. Complete processing of type III collagen in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 1999; 19 (06) 1506-1511
  • 15 Kovanen PT, Pentikäinen MO. Decorin links low-density lipoproteins (LDL) to collagen: a novel mechanism for retention of LDL in the atherosclerotic plaque. Trends Cardiovasc Med 1999; 9 (3-4): 86-91
  • 16 Pentikäinen MO, Oksjoki R, Oörni K, Kovanen PT. Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol 2002; 22 (02) 211-217
  • 17 Monnier VM, Vishwanath V, Frank KE, Elmets CA, Dauchot P, Kohn RR. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med 1986; 314 (07) 403-408
  • 18 Megens RT, Oude Egbrink MG, Cleutjens JP. , et al. Imaging collagen in intact viable healthy and atherosclerotic arteries using fluorescently labeled CNA35 and two-photon laser scanning microscopy. Mol Imaging 2007; 6 (04) 247-260
  • 19 Megens RT, oude Egbrink MG, Merkx M, Slaaf DW, van Zandvoort MA. Two-photon microscopy on vital carotid arteries: imaging the relationship between collagen and inflammatory cells in atherosclerotic plaques. J Biomed Opt 2008; 13 (04) 044022
  • 20 Sell DR, Nemet I, Monnier VM. Partial characterization of the molecular nature of collagen-linked fluorescence: role of diabetes and end-stage renal disease. Arch Biochem Biophys 2010; 493 (02) 192-206
  • 21 Jamasbi J, Megens RT, Bianchini M. , et al. Differential inhibition of human atherosclerotic plaque-induced platelet activation by dimeric GPVI-Fc and anti-GPVI antibodies: Functional and imaging studies. J Am Coll Cardiol 2015; 65 (22) 2404-2415
  • 22 Mojica Muñoz AK, Jamasbi J, Uhland K. , et al. Recombinant GPVI-Fc added to single or dual antiplatelet therapy in vitro prevents plaque-induced platelet thrombus formation. Thromb Haemost 2017; 117 (08) 1651-1659
  • 23 Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: past, present and future. Thromb Haemost 2017; 117 (07) 1249-1257
  • 24 Kuijpers MJ, Schulte V, Bergmeier W. , et al. Complementary roles of glycoprotein VI and alpha2beta1 integrin in collagen-induced thrombus formation in flowing whole blood ex vivo. FASEB J 2003; 17 (06) 685-687
  • 25 Auger JM, Kuijpers MJ, Senis YA, Watson SP, Heemskerk JW. Adhesion of human and mouse platelets to collagen under shear: a unifying model. FASEB J 2005; 19 (07) 825-827
  • 26 Grüner S, Prostredna M, Aktas B. , et al. Anti-glycoprotein VI treatment severely compromises hemostasis in mice with reduced alpha2beta1 levels or concomitant aspirin therapy. Circulation 2004; 110 (18) 2946-2951
  • 27 Herr AB, Farndale RW. Structural insights into the interactions between platelet receptors and fibrillar collagen. J Biol Chem 2009; 284 (30) 19781-19785
  • 28 Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129 (01) 12-23
  • 29 Penz SM, Reininger AJ, Toth O, Deckmyn H, Brandl R, Siess W. Glycoprotein Ibalpha inhibition and ADP receptor antagonists, but not aspirin, reduce platelet thrombus formation in flowing blood exposed to atherosclerotic plaques. Thromb Haemost 2007; 97 (03) 435-443
  • 30 Kuijpers MJ, Gilio K, Reitsma S. , et al. Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model. J Thromb Haemost 2009; 7 (01) 152-161
  • 31 Hechler B, Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost 2011; 105 (Suppl. 01) S3-S12
  • 32 ClinicalTrials.gov. Intracoronary stenting and antithrombotic regimen: lesion platelet adhesion as selective target of endovenous revacept (isar-plaster). 2017 . Available at: https://clinicaltrials.gov/ct2/show/NCT03312855 . Accessed December 5, 2018
  • 33 ClinicalTrials.gov. Revacept in symptomatic carotid stenosis. 2012 . Available at: https://clinicaltrials.gov/ct2/show/NCT01645306?term=revacept&rank=1 . Accessed December 20, 2018
  • 34 AdvanceCor. Completion of patient recruitment in a clinical phase ii study on revacept. 2018 . Available at: https://advancecor.de/en/news . Accessed February 5, 2019
  • 35 Acticor Biotech raises €15.3m in a series B financing; 2018 . Available at: https://acticor-biotech.com/ . Accessed February 5, 2019
  • 36 Bruton OC. Agammaglobulinemia. Pediatrics 1952; 9 (06) 722-728
  • 37 Vetrie D, Vorechovský I, Sideras P. , et al. The gene involved in X-linked agammaglobulinaemia is a member of the Src family of protein-tyrosine kinases. Nature 1993; 361 (6409): 226-233
  • 38 Tsukada S, Saffran DC, Rawlings DJ. , et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993; 72 (02) 279-290
  • 39 Futatani T, Watanabe C, Baba Y, Tsukada S, Ochs HD. Bruton's tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br J Haematol 2001; 114 (01) 141-149
  • 40 Shillitoe B, Gennery A. X-linked agammaglobulinaemia: outcomes in the modern era. Clin Immunol 2017; 183: 54-62
  • 41 Quek LS, Bolen J, Watson SP. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 1998; 8 (20) 1137-1140
  • 42 Oda A, Ikeda Y, Ochs HD. , et al. Rapid tyrosine phosphorylation and activation of Bruton's tyrosine/Tec kinases in platelets induced by collagen binding or CD32 cross-linking. Blood 2000; 95 (05) 1663-1670
  • 43 Atkinson BT, Ellmeier W, Watson SP. Tec regulates platelet activation by GPVI in the absence of Btk. Blood 2003; 102 (10) 3592-3599
  • 44 Zeiler M, Moser M, Mann M. Copy number analysis of the murine platelet proteome spanning the complete abundance range. Mol Cell Proteomics 2014; 13 (12) 3435-3445
  • 45 Watson SP, Auger JM, McCarty OJ, Pearce AC. GPVI and integrin alphaIIb beta3 signaling in platelets. J Thromb Haemost 2005; 3 (08) 1752-1762
  • 46 Gibbins JM. Platelet adhesion signalling and the regulation of thrombus formation. J Cell Sci 2004; 117 (Pt 16): 3415-3425
  • 47 Watson SP, Herbert JM, Pollitt AY. GPVI and CLEC-2 in hemostasis and vascular integrity. J Thromb Haemost 2010; 8 (07) 1456-1467
  • 48 Moroi AJ, Watson SP. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy. Biochem Pharmacol 2015; 94 (03) 186-194
  • 49 Mohamed AJ, Yu L, Bäckesjö CM. , et al. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228 (01) 58-73
  • 50 Bobe R, Wilde JI, Maschberger P. , et al. Phosphatidylinositol 3-kinase-dependent translocation of phospholipase Cgamma2 in mouse megakaryocytes is independent of Bruton tyrosine kinase translocation. Blood 2001; 97 (03) 678-684
  • 51 Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Proc Natl Acad Sci U S A 1997; 94 (21) 11526-11533
  • 52 Crosby D, Poole AW. Interaction of Bruton's tyrosine kinase and protein kinase Ctheta in platelets. Cross-talk between tyrosine and serine/threonine kinases. J Biol Chem 2002; 277 (12) 9958-9965
  • 53 Siess W. Molecular mechanisms of platelet activation. Physiol Rev 1989; 69 (01) 58-178
  • 54 Pasquet JM, Quek L, Stevens C. , et al. Phosphatidylinositol 3,4,5-trisphosphate regulates Ca(2+) entry via Btk in platelets and megakaryocytes without increasing phospholipase C activity. EMBO J 2000; 19 (12) 2793-2802
  • 55 Redondo PC, Ben-Amor N, Salido GM, Bartegi A, Pariente JA, Rosado JA. Ca2+-independent activation of Bruton's tyrosine kinase is required for store-mediated Ca2+ entry in human platelets. Cell Signal 2005; 17 (08) 1011-1021
  • 56 Liu J, Fitzgerald ME, Berndt MC, Jackson CW, Gartner TK. Bruton tyrosine kinase is essential for botrocetin/VWF-induced signaling and GPIb-dependent thrombus formation in vivo. Blood 2006; 108 (08) 2596-2603
  • 57 Imbruvica. Highlights of prescribing information; 2018 . Available at: https://www.imbruvica.com/docs/librariesprovider7/default-document-library/prescribing-information.pdf . Accessed February 5, 2019
  • 58 Honigberg LA, Smith AM, Sirisawad M. , et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 2010; 107 (29) 13075-13080
  • 59 Byrd JC, Harrington B, O'Brien S. , et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med 2016; 374 (04) 323-332
  • 60 Walter HS, Rule SA, Dyer MJ. , et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 2016; 127 (04) 411-419
  • 61 Wu J, Liu C, Tsui ST, Liu D. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol 2016; 9 (01) 80
  • 62 Gillooly KM, Pulicicchio C, Pattoli MA. , et al. Bruton's tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care. PLoS One 2017; 12 (07) e0181782
  • 63 Lee SK, Xing J, Catlett IM. , et al. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants. Eur J Clin Pharmacol 2017; 73 (06) 689-698
  • 64 Crawford JJ, Johnson AR, Misner DL. , et al. Discovery of GDC-0853: a potent, selective, and noncovalent Bruton's tyrosine kinase inhibitor in early clinical development. J Med Chem 2018; 61 (06) 2227-2245
  • 65 Herman AE, Chinn LW, Kotwal SG. , et al. Safety, pharmacokinetics, and pharmacodynamics in healthy volunteers treated with GDC-0853, a selective reversible Bruton's tyrosine kinase inhibitor. Clin Pharmacol Ther 2018; 103 (06) 1020-1028
  • 66 Katewa A, Wang Y, Hackney JA. , et al. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNα-driven lupus nephritis. JCI Insight 2017; 2 (07) e90111
  • 67 ClinicalTrials.gov. A study of efficacy and safety of m2951 in subjects with relapsing multiple sclerosis. 2018 . Available at: https://clinicaltrials.gov/ct2/show/NCT02975349?term=evobrutinib&rank=6 . Accessed March 31, 2019
  • 68 Díaz N. European and Americas Committees for Treatment and Research in Multiple Sclerosis (ECTRIMS/ACTRIMS) - 7th joint triennial congress (October 25–28, 2017 - Paris, France). Drugs Today (Barc) 2017; 53 (10) 559-563
  • 69 Chen J, Kinoshita T, Gururaja T. , et al. The effect of Bruton's tyrosine kinase (BTK) inhibitors on collagen-induced platelet aggregation, BTK, and tyrosine kinase expressed in hepatocellular carcinoma (TEC). Eur J Haematol 2018 . Doi: 10.1111/ejh.13148
  • 70 Brown JR, Moslehi J, Ewer MS. , et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br J Haematol 2019; 184 (04) 558-569
  • 71 Caron F, Leong DP, Hillis C, Fraser G, Siegal D. Current understanding of bleeding with ibrutinib use: a systematic review and meta-analysis. Blood Adv 2017; 1 (12) 772-778
  • 72 Calquence. Full prescribing information. 2017 . Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/210259s000lbl.pdf . Accessed March 31, 2019
  • 73 AstraZeneca. New long-term data on Calquence presented at ASH 2018. 2018 . Available at: https://www.astrazeneca.com/media-centre/press-releases/2018/new-long-term-data-on-calquence-presented-at-ash-2018-03122018.html . Accessed December 20, 2018
  • 74 Walter HS, Jayne S, Rule SA. , et al. Long-term follow-up of patients with CLL treated with the selective Bruton's tyrosine kinase inhibitor ONO/GS-4059. Blood 2017; 129 (20) 2808-2810
  • 75 Kamel S, Horton L, Ysebaert L. , et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia 2015; 29 (04) 783-787
  • 76 Levade M, David E, Garcia C. , et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood 2014; 124 (26) 3991-3995
  • 77 Bye AP, Unsworth AJ, Desborough MJ. , et al. Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Adv 2017; 1 (26) 2610-2623
  • 78 Nicolson PLR, Hughes CE, Watson S. , et al. Inhibition of Btk by Btk-specific concentrations of ibrutinib and acalabrutinib delays but does not block platelet aggregation to GPVI. Haematologica 2018; haematol.2018.193391
  • 79 Busygina K, Jamasbi J, Seiler T. , et al. Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 2018; 131 (24) 2605-2616
  • 80 Denzinger V, Busygina K, Jamasbi J. , et al. Optimizing platelet GPVI inhibition versus hemostatic impairment by ibrutinib and the novel Btk-inhibitors acalabrutinib, ONO/GS-4059, BGB-3111 and evobrutinib. Thromb Haemost 2019; 119 (03) 397-406
  • 81 Kazianka L, Drucker C, Skrabs C. , et al. Ristocetin-induced platelet aggregation for monitoring of bleeding tendency in CLL treated with ibrutinib. Leukemia 2017; 31 (05) 1117-1122
  • 82 Goto S, Tamura N, Handa S, Arai M, Kodama K, Takayama H. Involvement of glycoprotein VI in platelet thrombus formation on both collagen and von Willebrand factor surfaces under flow conditions. Circulation 2002; 106 (02) 266-272
  • 83 Arthur JF, Gardiner EE, Matzaris M. , et al. Glycoprotein VI is associated with GPIb-IX-V on the membrane of resting and activated platelets. Thromb Haemost 2005; 93 (04) 716-723
  • 84 Laffargue M, Ragab-Thomas JM, Ragab A. , et al. Phosphoinositide 3-kinase and integrin signalling are involved in activation of Bruton tyrosine kinase in thrombin-stimulated platelets. FEBS Lett 1999; 443 (01) 66-70
  • 85 Advani RH, Buggy JJ, Sharman JP. , et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013; 31 (01) 88-94
  • 86 Barf T, Covey T, Izumi R. , et al. Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J Pharmacol Exp Ther 2017; 363 (02) 240-252
  • 87 Shatzel JJ, Olson SR, Tao DL, McCarty OJT, Danilov AV, DeLoughery TG. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost 2017; 15 (05) 835-847
  • 88 Senis YA, Mazharian A, Mori J. Src family kinases: at the forefront of platelet activation. Blood 2014; 124 (13) 2013-2024
  • 89 Bye AP, Unsworth AJ, Vaiyapuri S, Stainer AR, Fry MJ, Gibbins JM. Ibrutinib inhibits platelet integrin alphaIIbbeta3 outside-in signaling and thrombus stability but not adhesion to collagen. Arterioscler Thromb Vasc Biol 2015; 35 (11) 2326-2335
  • 90 Wang ML, Blum KA, Martin P. , et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood 2015; 126 (06) 739-745
  • 91 Goerge T, Ho-Tin-Noe B, Carbo C. , et al. Inflammation induces hemorrhage in thrombocytopenia. Blood 2008; 111 (10) 4958-4964
  • 92 Pulte D, Olson KE, Broekman MJ. , et al. CD39 activity correlates with stage and inhibits platelet reactivity in chronic lymphocytic leukemia. J Transl Med 2007; 5: 23
  • 93 Lipsky AH, Farooqui MZ, Tian X. , et al. Incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib. Haematologica 2015; 100 (12) 1571-1578
  • 94 Lee RH, Piatt R, Conley PB, Bergmeier W. Effects of ibrutinib treatment on murine platelet function during inflammation and in primary hemostasis. Haematologica 2017; 102 (03) e89-e92
  • 95 Rigg RA, Aslan JE, Healy LD. , et al. Oral administration of Bruton's tyrosine kinase inhibitors impairs GPVI-mediated platelet function. Am J Physiol Cell Physiol 2016; 310 (05) C373-C380
  • 96 Cosemans JM, Kuijpers MJ, Lecut C. , et al. Contribution of platelet glycoprotein VI to the thrombogenic effect of collagens in fibrous atherosclerotic lesions. Atherosclerosis 2005; 181 (01) 19-27
  • 97 Lorenz RL, Boehlig B, Uedelhoven WM, Weber PC. Superior antiplatelet action of alternate day pulsed dosing versus split dose administration of aspirin. Am J Cardiol 1989; 64 (18) 1185-1188
  • 98 Bye AP, Gibbins JM. Move along, nothing to see here: Btk inhibitors stop platelets sticking to plaques. J Thromb Haemost 2018
  • 99 Hill A, Gotham D, Fortunak J. , et al. Target prices for mass production of tyrosine kinase inhibitors for global cancer treatment. BMJ Open 2016; 6 (01) e009586
  • 100 Pharmacompass. List of all manufacturers, suppliers & exporters of ibrutinib API listed on pharmacompass with details of regulatory filings. 2018 . Available at: https://www.pharmacompass.com/manufacturers-suppliers-exporters/ibrutinib . Accessed March 31, 2019