Semin Liver Dis 2019; 39(03): 334-340
DOI: 10.1055/s-0039-1685516
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mutational Processes in Hepatocellular Carcinoma: The Story of Aristolochic Acid

Jean-Charles Nault
1   Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors laboratory, Paris, France
2   Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France
3   Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
,
Eric Letouzé
1   Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors laboratory, Paris, France
› Author Affiliations
Further Information

Publication History

Publication Date:
30 April 2019 (online)

Abstract

Each hepatocellular carcinoma displays dozens of mutations in driver and passenger genes. The analysis of the types of substitutions and their trinucleotide context defines mutational signatures that recapitulate the endogenous and exogenous mutational processes operative in tumor cells. Aristolochic acid is present in plants from the genus Aristolochia and causes chronic nephropathy. Moreover, aristolochic acid has genotoxic properties responsible for the occurrence of urothelial carcinoma. Metabolites of aristolochic acid form DNA adducts on adenine residues leading to a specific mutational signature with almost exclusively A:T to T:A transversions, preferentially in a CTG trinucleotide context. Interestingly, this mutational fingerprint has been identified in a subset of hepatocellular carcinomas suggesting that aristolochic acid is a new risk factor for hepatocellular carcinoma. More data are warranted to capture the real impact of exposure to aristolochic acid in hepatocellular carcinoma occurrence worldwide.

 
  • References

  • 1 Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391 (10127): 1301-1314
  • 2 Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 2016; 150 (04) 835-853
  • 3 Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009; 458 (7239): 719-724
  • 4 Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. The genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 2015; 149 (05) 1226.e4-1239.e4
  • 5 Schulze K, Imbeaud S, Letouzé E. , et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47 (05) 505-511
  • 6 Nault JC, Mallet M, Pilati C. , et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun 2013; 4: 2218
  • 7 Totoki Y, Tatsuno K, Covington KR. , et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet 2014; 46 (12) 1267-1273
  • 8 Nik-Zainal S, Kucab JE, Morganella S. , et al. The genome as a record of environmental exposure. Mutagenesis 2015; 30 (06) 763-770
  • 9 Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 2014; 15 (09) 585-598
  • 10 Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science 2011; 331 (6024): 1553-1558
  • 11 Alexandrov LB, Nik-Zainal S, Wedge DC. , et al; Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain. Signatures of mutational processes in human cancer. Nature 2013; 500 (7463): 415-421
  • 12 Letouzé E, Shinde J, Renault V. , et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat Commun 2017; 8 (01) 1315
  • 13 Alexandrov L, Kim J, Haradhvala NJ. , et al. The Repertoire of Mutational Signatures in Human Cancer. bioRxiv 2018. doi: https://doi.org/10.1101/322859 [epub ahead of print]
  • 14 Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr Opin Genet Dev 2014; 24: 52-60
  • 15 Alexandrov LB, Jones PH, Wedge DC. , et al. Clock-like mutational processes in human somatic cells. Nat Genet 2015; 47 (12) 1402-1407
  • 16 Nik-Zainal S, Davies H, Staaf J. , et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016; 534 (7605): 47-54
  • 17 Palles C, Cazier J-B, Howarth KM. , et al; CORGI Consortium; WGS500 Consortium. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013; 45 (02) 136-144
  • 18 Pleasance ED, Cheetham RK, Stephens PJ. , et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010; 463 (7278): 191-196
  • 19 Liu D, Abbosh P, Keliher D. , et al. Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer. Nat Commun 2017; 8 (01) 2193
  • 20 Alexandrov LB, Ju YS, Haase K. , et al. Mutational signatures associated with tobacco smoking in human cancer. Science 2016; 354 (6312): 618-622
  • 21 Fujimoto A, Furuta M, Totoki Y. , et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet 2016; 48 (05) 500-509
  • 22 Poon SL, Pang ST, McPherson JR. , et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 2013; 5 (197) 197ra101
  • 23 Blokzijl F, de Ligt J, Jager M. , et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016; 538 (7624): 260-264
  • 24 Chang J, Tan W, Ling Z. , et al. Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol drinking-related mutation signature and genomic alterations. Nat Commun 2017; 8: 15290
  • 25 Kew MC. Aflatoxins as a cause of hepatocellular carcinoma. J Gastrointestin Liver Dis 2013; 22 (03) 305-310
  • 26 Zhang W, He H, Zang M. , et al. Genetic features of aflatoxin-associated hepatocellular carcinoma. Gastroenterology 2017; 153 (01) 249-262.e2
  • 27 Smela ME, Currier SS, Bailey EA, Essigmann JM. The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis 2001; 22 (04) 535-545
  • 28 Boot A, Huang MN, Ng AWT. , et al. In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res 2018; 28 (05) 654-665
  • 29 Cancer Genome Atlas Research Network. Electronic address: wheeler@bcm.edu, Cancer Genome Atlas Research Network. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017; 169: 1327.e23-1341.e23
  • 30 Ahn S-M, Jang SJ, Shim JH. , et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 2014; 60 (06) 1972-1982
  • 31 Kan Z, Zheng H, Liu X. , et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 2013; 23 (09) 1422-1433
  • 32 Vanherweghem JL, Depierreux M, Tielemans C. , et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 1993; 341 (8842): 387-391
  • 33 Debelle FD, Vanherweghem J-L, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int 2008; 74 (02) 158-169
  • 34 Vanhaelen M, Vanhaelen-Fastre R, But P, Vanherweghem JL. Identification of aristolochic acid in Chinese herbs. Lancet 1994; 343 (8890): 174
  • 35 Rosenquist TA, Grollman AP. Mutational signature of aristolochic acid: clue to the recognition of a global disease. DNA Repair (Amst) 2016; 44: 205-211
  • 36 Grollman AP, Shibutani S, Moriya M. , et al. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci U S A 2007; 104 (29) 12129-12134
  • 37 Mengs U. Acute toxicity of aristolochic acid in rodents. Arch Toxicol 1987; 59 (05) 328-331
  • 38 Schmeiser HH, Pool BL, Wiessler M. Identification and mutagenicity of metabolites of aristolochic acid formed by rat liver. Carcinogenesis 1986; 7 (01) 59-63
  • 39 Nortier JL, Martinez MC, Schmeiser HH. , et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 2000; 342 (23) 1686-1692
  • 40 Moriya M, Slade N, Brdar B. , et al. TP53 mutational signature for aristolochic acid: an environmental carcinogen. Int J Cancer 2011; 129 (06) 1532-1536
  • 41 Jelaković B, Vuković Lela I, Karanović S. , et al. Chronic dietary exposure to aristolochic acid and kidney function in native farmers from a Croatian endemic area and Bosnian immigrants. Clin J Am Soc Nephrol 2015; 10 (02) 215-223
  • 42 Schmeiser HH, Kucab JE, Arlt VM. , et al. Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania. Environ Mol Mutagen 2012; 53 (08) 636-641
  • 43 Wang S-M, Lai M-N, Wei A. , et al. Increased risk of urinary tract cancer in ESRD patients associated with usage of Chinese herbal products suspected of containing aristolochic acid. PLoS One 2014; 9 (08) e105218
  • 44 Chen C-H, Dickman KG, Moriya M. , et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S A 2012; 109 (21) 8241-8246
  • 45 Chen C-H, Dickman KG, Huang C-Y. , et al. Aristolochic acid-induced upper tract urothelial carcinoma in Taiwan: clinical characteristics and outcomes. Int J Cancer 2013; 133 (01) 14-20
  • 46 Zhong W, Zhang L, Ma J. , et al. Impact of aristolochic acid exposure on oncologic outcomes of upper tract urothelial carcinoma after radical nephroureterectomy. OncoTargets Ther 2017; 10: 5775-5782
  • 47 Pfau W, Schmeiser HH, Wiessler M. Aristolochic acid binds covalently to the exocyclic amino group of purine nucleotides in DNA. Carcinogenesis 1990; 11 (02) 313-319
  • 48 Schmeiser HH, Schoepe KB, Wiessler M. DNA adduct formation of aristolochic acid I and II in vitro and in vivo. Carcinogenesis 1988; 9 (02) 297-303
  • 49 Jadot I, Declèves A-E, Nortier J, Caron N. An integrated view of aristolochic acid nephropathy: update of the literature. Int J Mol Sci 2017; 18 (02) 18
  • 50 Schmeiser HH, Nortier JL, Singh R. , et al. Exceptionally long-term persistence of DNA adducts formed by carcinogenic aristolochic acid I in renal tissue from patients with aristolochic acid nephropathy. Int J Cancer 2014; 135 (02) 502-507
  • 51 Hoang ML, Chen CH, Sidorenko VS. , et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med 2013; 5 (197) 197ra102
  • 52 Castells X, Karanović S, Ardin M. , et al. Low-coverage exome sequencing screen in formalin-fixed paraffin-embedded tumors reveals evidence of exposure to carcinogenic aristolochic acid. Cancer Epidemiol Biomarkers Prev 2015; 24 (12) 1873-1881
  • 53 Liu Z, Hergenhahn M, Schmeiser HH, Wogan GN, Hong A, Hollstein M. Human tumor p53 mutations are selected for in mouse embryonic fibroblasts harboring a humanized p53 gene. Proc Natl Acad Sci U S A 2004; 101 (09) 2963-2968
  • 54 Chen C-J, Yang Y-H, Lin M-H. , et al; Health Data Analysis in Taiwan (hDATa) Research Group. Herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. Int J Cancer 2018
  • 55 Ng AWT, Poon SL, Huang MN. , et al. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 2017; 9 (412) 9
  • 56 Jin K, Su KK, Li T. , et al. Hepatic premalignant alterations triggered by human nephrotoxin aristolochic acid I in canines. Cancer Prev Res (Phila) 2016; 9 (04) 324-334
  • 57 Zou S, Li J, Zhou H. , et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat Commun 2014; 5: 5696