J Knee Surg 2019; 32(07): 590-595
DOI: 10.1055/s-0039-1679924
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Rationale and Results for Fixed-Bearing Pivoting Designs in Total Knee Arthroplasty

Scott A. Banks
1   Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida
,
Evan Deckard
2   Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
,
W. Andrew Hodge
3   Department of Orthopaedic Surgery, The Institute for Mobility and Longevity, Phoenix, Arizona
,
R. Michael Meneghini
2   Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
› Author Affiliations
Further Information

Publication History

30 October 2018

10 January 2019

Publication Date:
01 March 2019 (online)

Abstract

Total knee arthroplasty (TKA) is a maturing technology, and the focus for improvement centers on optimizing patient satisfaction and further reducing revisions. It is commonly assumed that achieving closer-to-normal knee mechanics in a TKA will result in further improvement in outcomes and revision rates. Fixed-bearing TKA designs with asymmetric pivoting articulations are designed to provide more natural joint stability and kinematics. These designs have been used for more than 20 years and there is a substantial body of literature characterizing their performance. This article reviews the various design types of fixed-bearing pivoting TKA designs, and recounts their clinical, functional, and patient-preference performance from peer-reviewed studies. To date, the evidence suggests there is measurable benefit to providing closer-to-normal joint stability and kinematics, and that fixed-bearing, pivoting TKA designs may decrease instability-related revisions and improve patient satisfaction.

 
  • References

  • 1 Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech 2005; 38 (02) 269-276
  • 2 Mannan K, Scott G. The medial rotation total knee replacement: a clinical and radiological review at a mean follow-up of six years. J Bone Joint Surg Br 2009; 91 (06) 750-756
  • 3 Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not?. Clin Orthop Relat Res 2010; 468 (01) 57-63
  • 4 Robertsson O, Dunbar M, Pehrsson T, Knutson K, Lidgren L. Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand 2000; 71 (03) 262-267
  • 5 Sharkey PF, Lichstein PM, Shen C, Tokarski AT, Parvizi J. Why are total knee arthroplasties failing today--has anything changed after 10 years?. J Arthroplasty 2014; 29 (09) 1774-1778
  • 6 Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 2000; 82 (08) 1189-1195
  • 7 Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 2000; 82 (08) 1196-1198
  • 8 Nakagawa S, Kadoya Y, Todo S. , et al. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br 2000; 82 (08) 1199-1200
  • 9 Harman MK, Bonin SJ, Leslie CJ, Banks SA, Hodge WA. Total knee arthroplasty designed to accommodate the presence or absence of the posterior cruciate ligament. Adv Orthop 2014; 2014 (178156): 178156
  • 10 Weber W, Weber F. Mechanik Der Menschlichen Gehwerkzeuge. Gottingen: 1836;
  • 11 Pinskerova V, Maquet P, Freeman MA. Writings on the knee between 1836 and 1917. J Bone Joint Surg Br 2000; 82 (08) 1100-1102
  • 12 Brantigan OC, Voshell AF. The mechanics of the ligaments and menisci of the knee joint. J Bone Jt Surg Am 1941; 23 (01) 44-66
  • 13 Moro-oka TA, Hamai S, Miura H. , et al. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 2008; 26 (04) 428-434
  • 14 Hamai S, Moro-oka TA, Miura H. , et al. Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities. J Orthop Res 2009; 27 (12) 1555-1561
  • 15 Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 2005; 38 (02) 241-253
  • 16 Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ. Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 2006; 88 (08) 1826-1834
  • 17 Koo S, Andriacchi TP. The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 2008; 41 (06) 1269-1273
  • 18 Kozanek M, Hosseini A, Liu F. , et al. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech 2009; 42 (12) 1877-1884
  • 19 Hoshino Y, Tashman S. Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc 2012; 20 (07) 1268-1275
  • 20 Yamaguchi S, Gamada K, Sasho T, Kato H, Sonoda M, Banks SA. In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities. Clin Biomech (Bristol, Avon) 2009; 24 (01) 71-76
  • 21 Kefala V, Cyr AJ, Harris MD. , et al. Assessment of knee kinematics in older adults using high-speed stereo radiography. Med Sci Sports Exerc 2017; 49 (11) 2260-2267
  • 22 Banks S, Kefala V, Cyr A, Shelburne K, Rullkoetter P. The knee joint center of rotation is activity dependent in healthy knees. Orthop Proc. 2018;98B(07). Available at: https://online.boneandjoint.org.uk/doi/abs/10.1302/1358-992X.98BSUPP_7.ISTA2015-029
  • 23 Jonas SC, Argyropoulos M, Al-Hadithy N. , et al. Knee arthroplasty with a medial rotating total knee replacement. Midterm clinical findings: a district general experience of 38 cases. Knee 2015; 22 (02) 122-125
  • 24 Moonot P, Mu S, Railton GT, Field RE, Banks SA. Tibiofemoral kinematic analysis of knee flexion for a medial pivot knee. Knee Surg Sports Traumatol Arthrosc 2009; 17 (08) 927-934
  • 25 Moonot P, Shang M, Railton GT, Field RE, Banks SA. In vivo weight-bearing kinematics with medial rotation knee arthroplasty. Knee 2010; 17 (01) 33-37
  • 26 Shimmin A, Martinez-Martos S, Owens J, Iorgulescu AD, Banks S. Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty. Knee 2015; 22 (06) 522-526
  • 27 Scott G, Imam MA, Eifert A. , et al. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation. Bone Joint Res 2016; 5 (03) 80-86
  • 28 Porter M. National Joint Registry for England and Wales - 9th Annual Report - 2012. Vol. 50. 2012. Available at: http://www.njrcentre.org.uk/njrcentre/Portals/0/Documents/England/Reports/9th_annual_report/NJR%209th%20Annual%20Report%202012.pdf
  • 29 Graves S, Davidson D, de Steiger R, Tomkins A. Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. Adelaide: AOA; 2012
  • 30 Macheras GA, Galanakos SP, Lepetsos P, Anastasopoulos PP, Papadakis SA. A long term clinical outcome of the Medial Pivot Knee Arthroplasty System. Knee 2017; 24 (02) 447-453
  • 31 Karachalios T, Varitimidis S, Bargiotas K, Hantes M, Roidis N, Malizos KN. An 11- to 15-year clinical outcome study of the Advance Medial Pivot total knee arthroplasty: pivot knee arthroplasty. Bone Joint J 2016; 98-B (08) 1050-1055
  • 32 Nakamura S, Minoda Y, Nakagawa S. , et al. Clinical results of alumina medial pivot total knee arthroplasty at a minimum follow-up of 10years. Knee 2017; 24 (02) 434-438
  • 33 Fitch DA, Sedacki K, Yang Y. Mid- to long-term outcomes of a medial-pivot system for primary total knee replacement: a systematic review and meta-analysis. Bone Joint Res 2014; 3 (10) 297-304
  • 34 Young T, Dowsey MM, Pandy M, Choong PF. A systematic review of clinical functional outcomes after medial stabilized versus non-medial stabilized total knee joint replacement. Front Surg 2018; 5: 25
  • 35 Samy DA, Wolfstadt JI, Vaidee I, Backstein DJ. A retrospective comparison of a medial pivot and posterior-stabilized total knee arthroplasty with respect to patient-reported and radiographic outcomes. J Arthroplasty 2018; 33 (05) 1379-1383
  • 36 Hossain F, Patel S, Rhee SJ, Haddad FS. Knee arthroplasty with a medially conforming ball-and-socket tibiofemoral articulation provides better function. Clin Orthop Relat Res 2011; 469 (01) 55-63
  • 37 Pritchett JW. Patient preferences in knee prostheses. J Bone Joint Surg Br 2004; 86 (07) 979-982
  • 38 Pritchett JW. Patients prefer a bicruciate-retaining or the medial pivot total knee prosthesis. J Arthroplasty 2011; 26 (02) 224-228
  • 39 Isberg J, Faxén E, Laxdal G, Eriksson BI, Kärrholm J, Karlsson J. Will early reconstruction prevent abnormal kinematics after ACL injury? Two-year follow-up using dynamic radiostereometry in 14 patients operated with hamstring autografts. Knee Surg Sports Traumatol Arthrosc 2011; 19 (10) 1634-1642
  • 40 Ginsel BL, Banks S, Verdonschot N, Hodge WA. Improving maximum flexion with a posterior cruciate retaining total knee arthroplasty: a fluoroscopic study. Acta Orthop Belg 2009; 75 (06) 801-807
  • 41 Mikashima Y, Tomatsu T, Horikoshi M. , et al. In vivo deep-flexion kinematics in patients with posterior-cruciate retaining and anterior-cruciate substituting total knee arthroplasty. Clin Biomech (Bristol, Avon) 2010; 25 (01) 83-87
  • 42 Watanabe T, Ishizuki M, Muneta T, Banks SA. Knee kinematics in anterior cruciate ligament-substituting arthroplasty with or without the posterior cruciate ligament. J Arthroplasty 2013; 28 (04) 548-552
  • 43 Mikashima Y, Harman MK, Coburn J, Hodge WA, Banks SA. In vivo kinematics of an acl-substituting knee arthroplasty during gait and stair activities. Orthop Proc. 2010;92B(0I). Available at: https://online.boneandjoint.org.uk/doi/abs/10.1302/0301-620X.92BSUPP_I.0920120
  • 44 Mitchell K, Banks S, Hodge WA. Total knee arthroplasty stability enhances strength. Orthop Proc. 2008;90B(0I). Available at: https://online.boneandjoint.org.uk/doi/abs/10.1302/0301-620X.90BSUPP_I.0880176c
  • 45 Watanabe T, Ishizuki M, Muneta T, Banks SA. Matched comparison of kinematics in knees with mild and severe varus deformity using fixed- and mobile-bearing total knee arthroplasty. Clin Biomech (Bristol, Avon) 2012; 27 (09) 924-928
  • 46 Ewald FC. The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res 1989; (248) 9-12
  • 47 Meneghini RM, Deckard ER, Ishmael MK, Ziemba-Davis M. A dual-pivot pattern simulating native knee kinematics optimizes functional outcomes after total knee arthroplasty. J Arthroplasty 2017; 32 (10) 3009-3015
  • 48 Banks SA, Meneghini RM. Achieving more natural motion, stability, and function with a dual-pivot ACL-substituting total knee arthroplasty design. Tech Orthop 2018; 33 (01) 48-51 . doi: 10.1097/BTO.0000000000000274
  • 49 Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 2003; (416) 37-57
  • 50 Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA. Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 2003; (410) 131-138
  • 51 Andriacchi TP, Galante JO, Fermier RW. The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 1982; 64 (09) 1328-1335
  • 52 Draganich LF, Piotrowski GA, Martell J, Pottenger LA. The effects of early rollback in total knee arthroplasty on stair stepping. J Arthroplasty 2002; 17 (06) 723-730
  • 53 Mitchell K, Banks S, Rawlins J, Wood S, Hodge W. Strength of intrinsically stable TKA during stair-climbing. In: Transactions of the Orthopaedic Research Society. 2005: 563 . Available at: http://www.ors.org/Transactions/51/0563.pdf
  • 54 Wang H, Simpson KJ, Ferrara MS, Chamnongkich S, Kinsey T, Mahoney OM. Biomechanical differences exhibited during sit-to-stand between total knee arthroplasty designs of varying radii. J Arthroplasty 2006; 21 (08) 1193-1199
  • 55 Blunn GW, Walker PS, Joshi A, Hardinge K. The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop Relat Res 1991; (273) 253-260