Semin Reprod Med 2018; 36(06): 340-350
DOI: 10.1055/s-0039-1678752
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Gynecologic Health Consequences of Chlamydia trachomatis Infection in Military Servicewomen

Christine Nadeau
1   Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
,
Dennis Fujii
2   Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington
,
Jessica Lentscher
2   Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington
,
Amanda Haney
3   Department of Obstetrics and Gynecology, Tripler Army Medical Center, Honolulu, Hawaii
,
Richard O. Burney
1   Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
2   Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington
› Author Affiliations
Further Information

Publication History

Publication Date:
19 April 2019 (online)

Abstract

Chlamydia trachomatis is the most common sexually transmitted bacterial infection in the United States. Within the U.S. military, the age- and race-adjusted chlamydia infection rates among female service members are consistently higher than civilian rates, with a 20% annual acquisition rate among young active-duty women. The sequelae of chlamydia disproportionately impact women in terms of severity and cost. Untreated chlamydia progresses to pelvic inflammatory disease in 40% of cases, and is a leading cause of fallopian tube damage and pelvic adhesive disease resulting in ectopic pregnancy, tubal infertility, and acute and chronic pelvic pain. Tubal infertility is among the leading indications for in vitro fertilization (IVF) nationally and rates among couples undergoing IVF at military treatment centers are double the national average. Collectively, chlamydia infection represents a significant resource burden to the military health care system and, in view of the serious gynecologic health sequelae, a significant threat to the readiness of servicewomen. In this review, we discuss the gynecologic impact of chlamydia infection within the military, the critical gaps for research funding, and opportunities for intervention.

Note

The views expressed herein are those of the authors and do not reflect the official policy or position of the Department of the Army, Department of Defense, the U.S. Government, or any organization listed.


 
  • References

  • 1 Armed Forces Health Surveillance Center. Sexually transmitted infections, active component, U.S. Armed Forces, 2000-2012. MSMR 2013; 20 (02) 5-10
  • 2 Seña AC, Miller WC, Hoffman IF. , et al. Trends of gonorrhea and chlamydial infection during 1985-1996 among active-duty soldiers at a United States Army installation. Clin Infect Dis 2000; 30 (04) 742-748
  • 3 Stahlman S, Oetting AA. Sexually transmitted infections, active component, U.S. Armed Forces, 2007-2016. MSMR 2017; 24 (09) 15-22
  • 4 Goyal V, Mattocks KM, Sadler AG. High-risk behavior and sexually transmitted infections among U.S. active duty servicewomen and veterans. J Womens Health (Larchmt) 2012; 21 (11) 1155-1169
  • 5 Deiss R, Bower RJ, Co E. , et al. The association between sexually transmitted infections, length of service and other demographic factors in the U.S. Military. PLoS One 2016; 11 (12) e0167892
  • 6 Shafer MA, Boyer CB, Pollack LM, Moncada J, Chang YJ, Schachter J. Acquisition of Chlamydia trachomatis by young women during their first year of military service. Sex Transm Dis 2008; 35 (03) 255-259
  • 7 Zenilman JM, Glass G, Shields T, Jenkins PR, Gaydos JC, McKee Jr KT. Geographic epidemiology of gonorrhoea and chlamydia on a large military installation: application of a GIS system. Sex Transm Infect 2002; 78 (01) 40-44
  • 8 Stahlman S, Garges EC, Ying S, Clark LL. Rates of Chlamydia trachomatis infections across the deployment cycle, active component, U.S. Armed Forces, 2008-2015. MSMR 2017; 24 (01) 12-18
  • 9 Gaydos CA, Howell MR, Pare B. , et al. Chlamydia trachomatis infections in female military recruits. N Engl J Med 1998; 339 (11) 739-744
  • 10 Army Medical Command. Health of the Force. U.S. Army; 2015
  • 11 Yablonsky AM, Martin RC, Highfill-McRoy RM. , et al. Military Women's Health: A Scoping Review and Gap Analysis, 2000–2015. Silver Spring: Naval Medical Research Center; 2017
  • 12 Gaydos CA, Howell MR, Quinn TC, McKee Jr KT, Gaydos JC. Sustained high prevalence of Chlamydia trachomatis infections in female army recruits. Sex Transm Dis 2003; 30 (07) 539-544
  • 13 Centers for Disease Control and Prevention. Chlamydia. National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention 2017 ; Available at: https://www.cdc.gov/std/chlamydia/stdfact-chlamydia-detailed.htm . Accessed September 30, 2018
  • 14 Catterson ML, Zadoo V. Prevalence of asymptomatic chlamydial cervical infection in active duty Army females. Mil Med 1993; 158 (09) 618-619
  • 15 Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F, Ness RB. Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis 2010; 201 (Suppl. 02) S134-S155
  • 16 Linhares IM, Witkin SS. Immunopathogenic consequences of Chlamydia trachomatis 60 kDa heat shock protein expression in the female reproductive tract. Cell Stress Chaperones 2010; 15 (05) 467-473
  • 17 Witkin SS, Minis E, Athanasiou A, Leizer J, Linhares IM. Chlamydia trachomatis: the persistent pathogen. Clin Vaccine Immunol 2017; 24 (10) e00203-17
  • 18 Peter NG, Clark LR, Jaeger JR. Fitz-Hugh-Curtis syndrome: a diagnosis to consider in women with right upper quadrant pain. Cleve Clin J Med 2004; 71 (03) 233-239
  • 19 Bautista CT, Hollingsworth BP, Sanchez JL. Repeat chlamydia diagnoses increase the hazard of pelvic inflammatory disease among US Army women: a retrospective cohort analysis. Sex Transm Dis 2018; 45 (11) 770-773
  • 20 Baud D, Goy G, Jaton K. , et al. Role of Chlamydia trachomatis in miscarriage. Emerg Infect Dis 2011; 17 (09) 1630-1635
  • 21 Kavanagh K, Wallace LA, Robertson C, Wilson P, Scoular A. Estimation of the risk of tubal factor infertility associated with genital chlamydial infection in women: a statistical modelling study. Int J Epidemiol 2013; 42 (02) 493-503
  • 22 Karaer A, Mert I, Cavkaytar S, Batioglu S. Serological investigation of the role of selected sexually transmitted infections in the aetiology of ectopic pregnancy. Eur J Contracept Reprod Health Care 2013; 18 (01) 68-74
  • 23 Greenberg JH. Venereal disease in the armed forces. Med Clin North Am 1972; 56 (05) 1087-1100
  • 24 Sternberg T, Howard EB, Dewey LA, Padget P. Preventive Medicine in World War II, Communicable Diseases. Vol 5. Washington, DC: Department of the Army; 1962
  • 25 Pusey W. Handling of the venereal problem in United States Army in the present crisis. J Am Med Assoc 1918; 71: 1017-1023
  • 26 Army Office of the Surgeon General. Sex Hygiene and Venereal Disease. Washington, DC: U.S. Government Printing Office; 1942
  • 27 Mueller A. Prostitutes, Prophylactics, and Propaganda: The Venereal Disease Campaign and the Fight for Control of Female Sexuality During WWII: History. Colorado: University of Colorado; 2018
  • 28 Hibben MC. Venereal Disease in the Armed Forces. Vol 1. Washington, DC: CQ Press; 1943
  • 29 Broughton P. Behind the Syphilis Campaign. Public Affairs Committee; 1938
  • 30 Leder J. Thanks for the Memories: Love, Sex, and World War II. Washington, DC: Potomac; 2009
  • 31 Morse S. Emerging Infections: Condemned to Repeat?. Washington, DC: The National Academies Press; 2009
  • 32 Deller J, Smith DE, English DT, Southwick EG. Venereal Diseases. Vol II. Washington, DC: Office of the Surgeon General; 1982
  • 33 Worboys M. Chlamydia: A Disease Without a History. In: Global Health Histories. World Health Organization; 2012
  • 34 Redgrove KA, McLaughlin EA. The role of the immune response in Chlamydia trachomatis infection of the male genital tract: a double-edged sword. Front Immunol 2014; 5: 534
  • 35 Sobinoff AP, Dando SJ, Redgrove KA. , et al. Chlamydia muridarum infection-induced destruction of male germ cells and Sertoli cells is partially prevented by Chlamydia major outer membrane protein-specific immune CD4 cells. Biol Reprod 2015; 92 (01) 27
  • 36 Cecil JA, Howell MR, Tawes JJ. , et al. Features of Chlamydia trachomatis and Neisseria gonorrhoeae infection in male Army recruits. J Infect Dis 2001; 184 (09) 1216-1219
  • 37 Mackern-Oberti JP, Motrich RD, Breser ML, Sánchez LR, Cuffini C, Rivero VE. Chlamydia trachomatis infection of the male genital tract: an update. J Reprod Immunol 2013; 100 (01) 37-53
  • 38 Detels R, Green AM, Klausner JD. , et al. The incidence and correlates of symptomatic and asymptomatic Chlamydia trachomatis and Neisseria gonorrhoeae infections in selected populations in five countries. Sex Transm Dis 2011; 38 (06) 503-509
  • 39 Patten E, Parker K. Women in the U.S. Military: Growing Share, Distinctive Profile. Washington, DC: Pew Research Center; 2011
  • 40 Office of the Deputy Assistant Secretary of Defense for Military Community and Family Policy. 2015 Demographics Profile of the Military Community. Available at: http://download.militaryonesource.mil/12038/MOS/Reports/2015-Demographics-Report.pdf . Accessed January 24, 2019
  • 41 Gaydos CA, Gaydos JC. Chlamydia in the United States military: can we win this war?. Sex Transm Dis 2008; 35 (03) 260-262
  • 42 Jordan NN, Lee SE, Nowak G, Johns NM, Gaydos JC. Chlamydia trachomatis reported among U.S. active duty service members, 2000-2008. Mil Med 2011; 176 (03) 312-319
  • 43 Bloom MS, Hu Z, Gaydos JC, Brundage JF, Tobler SK. Incidence rates of pelvic inflammatory disease diagnoses among Army and Navy recruits potential impacts of Chlamydia screening policies. Am J Prev Med 2008; 34 (06) 471-477
  • 44 Belland RJ, Zhong G, Crane DD. , et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis . Proc Natl Acad Sci U S A 2003; 100 (14) 8478-8483
  • 45 Mylonas I. Female genital Chlamydia trachomatis infection: where are we heading?. Arch Gynecol Obstet 2012; 285 (05) 1271-1285
  • 46 Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 2013; 3 (05) a010256
  • 47 Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev 2005; 29 (05) 949-959
  • 48 Belland RJ, Nelson DE, Virok D. , et al. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci U S A 2003; 100 (26) 15971-15976
  • 49 Hybiske K, Stephens RS. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A 2007; 104 (27) 11430-11435
  • 50 Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis . FEMS Microbiol Rev 2016; 40 (06) 875-893
  • 51 Rasmussen SJ, Eckmann L, Quayle AJ. , et al. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 1997; 99 (01) 77-87
  • 52 Stephens RS. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol 2003; 11 (01) 44-51
  • 53 Wølner-Hanssen P, Mårdh PA. In vitro tests of the adherence of Chlamydia trachomatis to human spermatozoa. Fertil Steril 1984; 42 (01) 102-107
  • 54 Friberg J, Confino E, Suarez M, Gleicher N. Chlamydia trachomatis attached to spermatozoa recovered from the peritoneal cavity of patients with salpingitis. J Reprod Med 1987; 32 (02) 120-122
  • 55 IJland MM, Evers JL, Dunselman GA, Hoogland HJ. ; MM IJ. Subendometrial contractions in the nonpregnant uterus: an ultrasound study. Eur J Obstet Gynecol Reprod Biol 1996; 70 (01) 23-24
  • 56 Zhu H, Shen Z, Luo H, Zhang W, Zhu X. Chlamydia trachomatis infection-associated risk of cervical cancer: a meta-analysis. Medicine (Baltimore) 2016; 95 (13) e3077
  • 57 Heinonen PK, Miettinen A. Laparoscopic study on the microbiology and severity of acute pelvic inflammatory disease. Eur J Obstet Gynecol Reprod Biol 1994; 57 (02) 85-89
  • 58 Haggerty CL, Schulz R, Ness RB. ; PID Evaluation and Clinical Health Study Investigators. Lower quality of life among women with chronic pelvic pain after pelvic inflammatory disease. Obstet Gynecol 2003; 102 (5, Pt 1): 934-939
  • 59 Kimani J, Maclean IW, Bwayo JJ. , et al. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis 1996; 173 (06) 1437-1444
  • 60 Kosseim M, Brunham RC. Fallopian tube obstruction as a sequela to Chlamydia trachomatis infection. Eur J Clin Microbiol 1986; 5 (05) 584-590
  • 61 Armed Forces Health Surveillance Center (AFHSC). Acute pelvic inflammatory disease, active component, U.S. Armed Forces, 2002-2011. MSMR 2012; 19 (07) 11-13
  • 62 Owings AJ, Clark LL, Rohrbeck P. Incident and recurrent Chlamydia trachomatis and Neisseria gonorrhoeae infections, active component, U.S. Armed Forces, 2010-2014. MSMR 2016; 23 (02) 20-28
  • 63 Hillis SD, Joesoef R, Marchbanks PA, Wasserheit JN, Cates Jr W, Westrom L. Delayed care of pelvic inflammatory disease as a risk factor for impaired fertility. Am J Obstet Gynecol 1993; 168 (05) 1503-1509
  • 64 Weström L, Bengtsson LP, Mårdh PA. Incidence, trends, and risks of ectopic pregnancy in a population of women. Br Med J (Clin Res Ed) 1981; 282 (6257): 15-18
  • 65 Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 2006; 12 (04) 363-372
  • 66 Ajonuma LC, Ng EH, Chan HC. New insights into the mechanisms underlying hydrosalpinx fluid formation and its adverse effect on IVF outcome. Hum Reprod Update 2002; 8 (03) 255-264
  • 67 Hafner LM. Pathogenesis of fallopian tube damage caused by Chlamydia trachomatis infections. Contraception 2015; 92 (02) 108-115
  • 68 Weström L, Joesoef R, Reynolds G, Hagdu A, Thompson SE. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis 1992; 19 (04) 185-192
  • 69 Zeyneloglu HB, Arici A, Olive DL. Adverse effects of hydrosalpinx on pregnancy rates after in vitro fertilization-embryo transfer. Fertil Steril 1998; 70 (03) 492-499
  • 70 Camus E, Poncelet C, Goffinet F. , et al. Pregnancy rates after in-vitro fertilization in cases of tubal infertility with and without hydrosalpinx: a meta-analysis of published comparative studies. Hum Reprod 1999; 14 (05) 1243-1249
  • 71 Berg CJ, Callaghan WM, Syverson C, Henderson Z. Pregnancy-related mortality in the United States, 1998 to 2005. Obstet Gynecol 2010; 116 (06) 1302-1309
  • 72 Creanga AA, Shapiro-Mendoza CK, Bish CL, Zane S, Berg CJ, Callaghan WM. Trends in ectopic pregnancy mortality in the United States: 1980-2007. Obstet Gynecol 2011; 117 (04) 837-843
  • 73 Donnez J, Nisolle M. Endoscopic management of ectopic pregnancy. Baillieres Clin Obstet Gynaecol 1994; 8 (04) 707-722
  • 74 Female infertility, active component service women, U.S. Armed Forces, 2000-2012. MSMR 2013; 20 (09) 8-12
  • 75 Rivera-Alsina ME, Crisan LS. Management of ectopic pregnancy in the military during deployment to Southwest Asia. Mil Med 2008; 173 (01) 97-99
  • 76 Stamilio DM, McReynolds T, Endrizzi J, Lyons RC. Diagnosis and treatment of a ruptured ectopic pregnancy in a combat support hospital during Operation Iraqi Freedom: case report and critique of a field-ready sonographic device. Mil Med 2004; 169 (09) 681-683
  • 77 Barnhart KT. Clinical practice. Ectopic pregnancy. N Engl J Med 2009; 361 (04) 379-387
  • 78 Wedderburn CJ, Warner P, Graham B, Duncan WC, Critchley HO, Horne AW. Economic evaluation of diagnosing and excluding ectopic pregnancy. Hum Reprod 2010; 25 (02) 328-333
  • 79 Mol BW, Hajenius PJ, Engelsbel S. , et al. Treatment of tubal pregnancy in the Netherlands: an economic comparison of systemic methotrexate administration and laparoscopic salpingostomy. Am J Obstet Gynecol 1999; 181 (04) 945-951
  • 80 Yeh JM, Hook III EW, Goldie SJ. A refined estimate of the average lifetime cost of pelvic inflammatory disease. Sex Transm Dis 2003; 30 (05) 369-378
  • 81 Haggerty CL, Peipert JF, Weitzen S. , et al; PID Evaluation and Clinical Health (PEACH) Study Investigators. Predictors of chronic pelvic pain in an urban population of women with symptoms and signs of pelvic inflammatory disease. Sex Transm Dis 2005; 32 (05) 293-299
  • 82 Mathias SD, Kuppermann M, Liberman RF, Lipschutz RC, Steege JF. Chronic pelvic pain: prevalence, health-related quality of life, and economic correlates. Obstet Gynecol 1996; 87 (03) 321-327
  • 83 Crisp CD, Hastings-Tolsma M, Jonscher KR. Mindfulness-based stress reduction for military women with chronic pelvic pain: a feasibility study. Mil Med 2016; 181 (09) 982-989
  • 84 Wright Jr J, Albright TS, Gehrich AP, Dunlow SG, Lettieri CF, Buller JL. Pelvic pain presenting in a combat environment. Mil Med 2006; 171 (09) 841-843
  • 85 Centers for Disease Control and Prevention. Sexually transmitted disease surveillance. Atlanta, GA: US Department of Health and Human Services; 2017
  • 86 Satterwhite CL, Torrone E, Meites E. , et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis 2013; 40 (03) 187-193
  • 87 Cuffe KM, Newton-Levinson A, Gift TL, McFarlane M, Leichliter JS. Sexually transmitted infection testing among adolescents and young adults in the United States. J Adolesc Health 2016; 58 (05) 512-519
  • 88 Webber BJ, Pawlak MT, Jones NM, Tchandja JN, Foster GA. Sexually transmitted infections in U.S. Air Force recruits in basic military training. MSMR 2016; 23 (02) 16-19
  • 89 Arcari CM, Gaydos JC, Howell MR, McKee KT, Gaydos CA. Feasibility and short-term impact of linked education and urine screening interventions for Chlamydia and gonorrhea in male army recruits. Sex Transm Dis 2004; 31 (07) 443-447
  • 90 Boyer CB, Shafer MA, Shaffer RA. , et al. Evaluation of a cognitive-behavioral, group, randomized controlled intervention trial to prevent sexually transmitted infections and unintended pregnancies in young women. Prev Med 2005; 40 (04) 420-431
  • 91 MacDonald MR. Sexual Health and Responsibility Program (SHARP): preventing HIV, STIs, and unplanned pregnancies in the navy and marine corps. Public Health Rep 2013; 128 (Suppl. 01) 81-88
  • 92 MacDonald MR. Sexual Health and Responsibility Program (SHARP): preventing HIV, STIs and unplanned pregnancies in the navy and marine corps. Public Health Rep 2013; 128 Suppl 1: 81-88
  • 93 Tourdot LE, Jordan NN, Leamer NK, Nowak G, Gaydos JC. Incidence of Chlamydia trachomatis infections and screening compliance, U.S. Army active duty females under 25 years of age, 2011-2014. MSMR 2016; 23 (02) 29-31
  • 94 Centers for Disease Control and Prevention. Male Chlamydia Screening Consultation: Meeting Report. Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, U.S. Department of Health and Human Services; 2006
  • 95 Jordan NN, Clemmons NS, Gaydos JC, Lee HC, Yi SH, Klein TA. Chlamydia trachomatis screening initiative among U.S. Army soldiers assigned to Korea. MSMR 2013; 20 (02) 15-16
  • 96 Aptima. Chlamydia trachomatis Assay Package Insert. Available at: https://www.hologic.com/sites/default/files/package-insert/502485-IFU-PI_001_01.pdf . Accessed February 8, 2019
  • 97 Abott. RealTime CT/NG Package Insert. Available at: https://www.molecular.abbott/sal/en-us/staticAssets/ctng-8l07-91-us-final.pdf . Accessed October 9, 2018
  • 98 Pai NP, Wilkinson S, Deli-Houssein R. , et al. Barriers to implementation of rapid and point-of-care tests for human immunodeficiency virus infection: findings from a systematic review (1996-2014). Point Care 2015; 14 (03) 81-87
  • 99 Widdice LE, Hsieh YH, Silver B, Barnes M, Barnes P, Gaydos CA. Performance of the Atlas rapid test for Chlamydia trachomatis and women's attitudes toward point-of-care testing. Sex Transm Dis 2018; 45 (11) 723-727
  • 100 Gift TL, Pate MS, Hook III EW, Kassler WJ. The rapid test paradox: when fewer cases detected lead to more cases treated: a decision analysis of tests for Chlamydia trachomatis . Sex Transm Dis 1999; 26 (04) 232-240
  • 101 Hack JB, Hecht C. Emergency physicians' patterns of treatment for presumed gonorrhea and chlamydia in women: one center's practice. J Emerg Med 2009; 37 (03) 257-263
  • 102 Wang SA, Papp JR, Stamm WE, Peeling RW, Martin DH, Holmes KK. Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J Infect Dis 2005; 191 (06) 917-923
  • 103 Gérard HC, Whittum-Hudson JA, Schumacher HR, Hudson AP. Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb Pathog 2004; 36 (01) 35-39
  • 104 Dean D, Schachter J, Dawson CR, Stephens RS. Comparison of the major outer membrane protein variant sequence regions of B/Ba isolates: a molecular epidemiologic approach to Chlamydia trachomatis infections. J Infect Dis 1992; 166 (02) 383-392
  • 105 Jones RB, Van der Pol B, Martin DH, Shepard MK. Partial characterization of Chlamydia trachomatis isolates resistant to multiple antibiotics. J Infect Dis 1990; 162 (06) 1309-1315
  • 106 Somani J, Bhullar VB, Workowski KA, Farshy CE, Black CM. Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J Infect Dis 2000; 181 (04) 1421-1427
  • 107 Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007; 5 (01) 48-56
  • 108 Sandoz KM, Rockey DD. Antibiotic resistance in Chlamydiae. Future Microbiol 2010; 5 (09) 1427-1442
  • 109 Seña AC, Lensing S, Rompalo A. , et al. Chlamydia trachomatis, Mycoplasma genitalium, and Trichomonas vaginalis infections in men with nongonococcal urethritis: predictors and persistence after therapy. J Infect Dis 2012; 206 (03) 357-365
  • 110 Khosropour CM, Bell TR, Hughes JP, Manhart LE, Golden MR. A population-based study to compare treatment outcomes among women with urogenital chlamydial infection in Washington State, 1992 to 2015. Sex Transm Dis 2018; 45 (05) 319-324
  • 111 Kong FY, Tabrizi SN, Fairley CK. , et al. The efficacy of azithromycin and doxycycline for the treatment of rectal chlamydia infection: a systematic review and meta-analysis. J Antimicrob Chemother 2015; 70 (05) 1290-1297
  • 112 CDC. Sexually Transmitted Diseases. 2015. STD Treatment Guidelines 2017. Available at: https://www.cdc.gov/std/tg2015/chlamydia.htm . Accessed October 9, 2018
  • 113 Rose SB, Garrett SM, Kennedy J. , et al. Partner notification and retesting for Chlamydia trachomatis and Neisseria gonorrhoeae: a case-note review in New Zealand primary care. J Prim Health Care 2018; 10 (02) 132-139
  • 114 Götz HM, Hoebe CJ, Van Bergen JE. , et al. Management of Chlamydia cases and their partners: results from a home-based screening program organized by municipal public health services with referral to regular health care. Sex Transm Dis 2005; 32 (10) 625-629
  • 115 Kachur R, Adelson S, Firenze K, Herrera M. Reaching patients and their partners through mobile: text messaging for case management and partner notification. Sex Transm Dis 2011; 38 (02) 149-150
  • 116 Woodhall SC, Gorwitz RJ, Migchelsen SJ. , et al. Advancing the public health applications of Chlamydia trachomatis serology. Lancet Infect Dis 2018; 18 (12) e399-e407
  • 117 de la Maza LM, Zhong G, Brunham RC. Update on Chlamydia trachomatis vaccinology. Clin Vaccine Immunol 2017; 24 (04) e00543-16
  • 118 Poston TB, Darville T. Chlamydia trachomatis: protective adaptive responses and prospects for a vaccine. Curr Top Microbiol Immunol 2018; 412: 217-237
  • 119 Brunham RC, Rappuoli R. Chlamydia trachomatis control requires a vaccine. Vaccine 2013; 31 (15) 1892-1897
  • 120 Newman L, Rowley J, Vander Hoorn S. , et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 2015; 10 (12) e0143304
  • 121 Brunham RC, Rey-Ladino J. Immunology of chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 2005; 5 (02) 149-161
  • 122 Roan NR, Starnbach MN. Immune-mediated control of chlamydia infection. Cell Microbiol 2008; 10 (01) 9-19
  • 123 Rank RG, Lacy HM, Goodwin A. , et al. Host chemokine and cytokine response in the endocervix within the first developmental cycle of Chlamydia muridarum . Infect Immun 2010; 78 (01) 536-544
  • 124 Johnson RM, Yu H, Strank NO, Karunakaran K, Zhu Y, Brunham RC. B cell presentation of chlamydia antigen selects out protective CD4γ13 T cells: implications for genital tract tissue-resident memory lymphocyte clusters. Infect Immun 2018; 86 (02) e00614-17
  • 125 Peeling R, Maclean IW, Brunham RC. In vitro neutralization of Chlamydia trachomatis with monoclonal antibody to an epitope on the major outer membrane protein. Infect Immun 1984; 46 (02) 484-488
  • 126 Megran DW, Stiver HG, Peeling R, Maclean IW, Brunham RC. Complement enhancement of neutralizing antibody to the structural proteins of Chlamydia trachomatis . J Infect Dis 1988; 158 (03) 661-663
  • 127 Pal S, Theodor I, Peterson EM, de la Maza LM. Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine 1997; 15 (05) 575-582
  • 128 Li LX, McSorley SJ. A re-evaluation of the role of B cells in protective immunity to Chlamydia infection. Immunol Lett 2015; 164 (02) 88-93
  • 129 Gottlieb SL, Deal CD, Giersing B. , et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine 2016; 34 (26) 2939-2947
  • 130 Van Horn AS, Reed SA. Medical and psychological aspects of infertility and assisted reproductive technology for the primary care provider. Mil Med 2001; 166 (11) 1018-1022
  • 131 Office for Emergency Management. “From Time Immemorial”. Available at: https://commons.wikimedia.org/wiki/File:%22From_Time_Immemorial%22_-_NARA_-_514338.jpg . Accessed November 25, 2018