CC BY-NC-ND 4.0 · Yearb Med Inform 2019; 28(01): 208-217
DOI: 10.1055/s-0039-1677918
Section 10: Natural Language Processing
Survey
Georg Thieme Verlag KG Stuttgart

Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data

Mike Conway
1   Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
,
Mengke Hu
1   Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
,
Wendy W. Chapman
1   Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
16. August 2019 (online)

Summary

Objective: We present a narrative review of recent work on the utilisation of Natural Language Processing (NLP) for the analysis of social media (including online health communities) specifically for public health applications.

Methods: We conducted a literature review of NLP research that utilised social media or online consumer-generated text for public health applications, focussing on the years 2016 to 2018. Papers were identified in several ways, including PubMed searches and the inspection of recent conference proceedings from the Association of Computational Linguistics (ACL), the Conference on Human Factors in Computing Systems (CHI), and the International AAAI (Association for the Advancement of Artificial Intelligence) Conference on Web and Social Media (ICWSM). Popular data sources included Twitter, Reddit, various online health communities, and Facebook.

Results: In the recent past, communicable diseases (e.g., influenza, dengue) have been the focus of much social media-based NLP health research. However, mental health and substance use and abuse (including the use of tobacco, alcohol, marijuana, and opioids) have been the subject of an increasing volume of research in the 2016 - 2018 period. Associated with this trend, the use of lexicon-based methods remains popular given the availability of psychologically validated lexical resources suitable for mental health and substance abuse research. Finally, we found that in the period under review “modern" machine learning methods (i.e. deep neural-network-based methods), while increasing in popularity, remain less widely used than “classical" machine learning methods.

 
  • References

  • 1 Fox S. The social life of health information; Available from: http://www.pewresearch.org/fact-tank/2014/01/15/the-social-life-of-health-information/
  • 2 Paul M, Dredze M. Social Monitoring for Public Health. Marchionini G. editor. Morgan Claypool. 2017
  • 3 Guntuku S, Yaden D, Kern M, Ungar L, Eichstaedt J. Detecting depression and mental illness on social media: an integrative review. Curr Opin Behav Sci 2017; 18: 43-9
  • 4 Trautmann S, Rehm J, Wittchen HU. The economic costs of mental disorders: Do our societies react appropriately to the burden of mental disorders?. EMBO Rep 2016; 17 (09) 1245-9
  • 5 Tangherlini TR, Roychowdhury V, Glenn B, Crespi CM, Bandari R, Wadia A. , et al. “Mommy Blogs” and the vaccination exemption narrative: results from a machine-learning approach for story aggregation on parenting social media sites. JMIR Public Health Surveill 2016; 2 (02) e166
  • 6 Allem JP, Dharmapuri L, Unger JB, Cruz TB. Characterizing JUUL-related posts on Twitter. Drug Alcohol Depend 2018; 190: 1-5
  • 7 Charles-Smith L, Reynolds T, Cameron M, Conway M, Lau E, Olsen J. , et al. Using social media for actionable disease surveillance and outbreak management: a systematic literature review. PLoS One 2015; 10 (10) e0139701
  • 8 Eichstaedt JC, Smith RJ, Merchant RM, Ungar LH, Crutchley P, Preoiuc-Pietro D. , et al. Facebook language predicts depression in medical records. Proc Natl Acad Sci U S A 2018; 115 (44) 11203-8
  • 9 Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: Addressing ethical challenges. PLoS Med 2018; 15 (11) e1002689
  • 10 Park A, Conway M. Tracking health related discussions on Reddit for public health applications. AMIA Annu Symp Proc 2017; 2017: 1362-71
  • 11 Meacham M, Paul M, Ramo D. Understanding emerging forms of cannabis use through an online cannabis community: An analysis ofrelative post volume and subjective highness ratings. Drug Alcohol Depend 2018; 188: 364-9
  • 12 Zhan Y, Liu R, Li Q, Leischow S, Zeng D. Identifying topics for e-cigarette user-generated contents: a case study from multiple social media platforms. J Med Internet Res 2017; 19 (01) e24
  • 13 Chen A, Zhu SH, Conway M. What online communities can tell us about electronic cigarettes and hookah use: a study using text mining and visualization techniques. J Med Internet Res 2015; 17 (09) e220
  • 14 Nobles A, Dreisbach C, Kelm-Malpass J, Barnes L. “Is This an STD? Please Help!”: Online Information Seeking for Sexually Transmitted Diseases on Reddit. In: Proceedings of the Twelfth International Conference on Web and Social Media; 2018. p. 660-3
  • 15 Moessner M, Feldhege J, Wolf M, Bauer S. Analyzing big data in social media: text and network analyses of an eating disorder forum. Int J Eat Disord 2018; 51 (07) 656-67
  • 16 Aladag A, Muderrisoglu S, Akbas N, Zahmacioglu O, Bingol H. Detecting suicidal Ideation on forums: proof-of-concept study. J Med Internet Res. 2018; 20 (06) e215
  • 17 Park A, Conway M. Harnessing Reddit to understand the written-communication challenges experienced by individuals with mental health disorders: analysis of texts from mental health communities. J Med Internet Res 2018; 20 (04) e121
  • 18 Coppersmith G, Leary R, Crutchley P, Fine A. Natural language processing of social media as screening for suicide risk. Biomed Inform Insights 2018; 10: 1178222618792860
  • 19 Park A, Conway M, Chen A. Examining thematic similarity, difference, and membership in three online mental health communities from Reddit: a text mining and visualization approach. Comput Human Behav 2018; 78: 98-112
  • 20 Sharma E, De Choudhury M. Mental health support and its relationship to linguistic accommodation in online communities. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI ’18. New York, NY, USA: ACM; 2018. p. 641:1-641:13. Available from: http://doi.acm.org/10.1145/3173574.3174215
  • 21 Ive J, Gkotsis G, Dutta R, Stewart R, Velupillai S. Hierarchical neural model with attention mechanisms for the classification of social media text related to mental health. In: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic. Association for Computational Linguistics; 2018. p. 69-77. Available from: http://aclweb.org/anthology/W18-0607
  • 22 Gkotsis G, Oellrich A, Velupillai S, Liakata M, Hubbard T, Dobson R. , et al. Characterisation of mental health conditions in social media using Informed Deep Learning. Sci Rep 2017; 7: 45141
  • 23 Park A, Conway M. Longitudinal changes in psychological states in online health community members: understanding the long-term effects of participating in an online depression community. J Med Internet Res 2017; 19 (03) e71
  • 24 Kavuluru R, Williams AG, Ramos-Morales M, Haye L, Holaday T, Cerel J. Classification of helpful comments on online suicide watch forums. ACM BCB 2016; 2016: 32-40
  • 25 De Choudhury M, Kiciman E, Dredze M, Coppersmith G, Kumar M. Discovering shifts to suicidal ideation from mental health content in social media. Proc SIGCHI Conf Hum Factor Comput Syst 2016; 2016: 2098-110
  • 26 Gkotsis G, Oellrich A, Hubbard T, Dobson R, Liakata M, Velupillai S. , et al. The language of mental health problems in social media. In: Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology. Association for Computational Linguistics; 2016. p. 63-73. Available from: http://aclweb.org/anthology/W16-0307
  • 27 Kumar M, Dredze M, Coppersmith G, De Choudhury M. Detecting changes in suicide content manifested in social media following celebrity suicides. HT ACM Conf Hypertext Soc Media 2015; 2015: 85-94
  • 28 Mitra T, Counts S, Pennebaker J. Understanding anti-vaccination attitudes in social media. In: Proceedings of the Tenth International Conference on Web and Social Media (ICWSM 2016): 2016. p. 269-78
  • 29 Surian D, Nguyen DQ, Kennedy G, Johnson M, Coiera E, Dunn AG. Characterizing Twitter discussions about HPV vaccines using topic modeling and community detection. J Med Internet Res 2016; 18 (08) e232
  • 30 Massey P, Leader A, Yom-Tov E, Budenz A, Fisher K, Klassen A. Applying multiple data collection tools to quantify human papillomavirus vaccine communication on Twitter. J Med Internet Res 2016; 18 (12) e318
  • 31 Wakamiya S, Kawai Y, Aramaki E. Twitter-based influenza detection after flu peak via tweets with indirect information: text mining study. JMIR Public Health Surveill 2018; 4 (03) e65
  • 32 Al-Garadi MA, Khan MS, Varathan KD, Mujtaba G, Al-Kabsi AM. Using online social networks to track a pandemic: A systematic review. J Biomed Inform 2016; 62: 1-11
  • 33 Mowery J. Twitter Influenza Surveillance: Quantifying Seasonal Misdiagnosis Patterns and their Impact on Surveillance Estimates. Online J Public Health Inform 2016; 8 (03) e198
  • 34 Zhang L, Hall M, Bastola D. Utilizing Twitter data for analysis of chemotherapy. Int J Med Inform 2018; 120: 92-100
  • 35 Mackey T, Kalyanam J, Klugman J, Kuzmenko E, Gupta R. Solution to detect, classify, and report illicit online marketing and sales of controlled substances via Twitter: using machine learning and web forensics to combat digital opioid access. J Med Internet Res 2018; 20 (04) e10029
  • 36 Curtis B, Giorgi S, Buffone AEK, Ungar LH, Ashford RD, Hemmons J. , et al. Can Twitter be used to predict county excessive alcohol consumption rates?. PLoS One 2018; 13 (04) e0194290
  • 37 Simpson SS, Adams N, Brugman CM, Conners TJ. Detecting novel and emerging drug terms using natural language processing: a social media corpus study. JMIR Public Health Surveill 2018; 4 (01) e2
  • 38 Ayers J, Dredze M, Leas E, Caputi T, Allem JP, Cohen J. Next generation media monitoring: Global coverage of electronic nicotine delivery systems (electronic cigarettes) on Bing, Google and Twitter, 2013–2018. PLoS One 2018; 13 (11) e0205822
  • 39 Mackey TK, Kalyanam J, Katsuki T, Lanckriet G. Twitter-based detection of illegal online sale of prescription opioid. Am J Public Health 2017; 107 (12) 1910-1915
  • 40 Huang T, Elghafari A, Relia K, Chunara R. High-resolution temporal representations of alcohol and tobacco behaviors from social media data. Proc ACM Hum Comput Interact 2017 Nov;1(CSCW)
  • 41 Glowacki EM, Glowacki JB, Wilcox GB. A text-mining analysis of the public’s reactions to the opioid crisis. Subst Abus 2017 Jul; p. 1-5
  • 42 Mackey TK, Kalyanam J. Detection of illicit online sales of fentanyls via Twitter. F1000Res 2017; 6: 1937
  • 43 Lazard A, Saffer A, Wilcox G, Chung AD, Mackert M, Bernhardt J. E-cigarette social media messages: a text mining analysis of marketing and consumer conversations on Twitter. JMIR Public Health Surveill 2016; 2 (02) e171
  • 44 Kolliakou A, Ball M, Derczynski L, Chandran D, Gkotsis G, Deluca P. , et al. Novel psychoactive substances: An investigation of temporal trends in social media and electronic health records. Eur Psychiatry 2016; 38: 15-21
  • 45 Kostygina G, Tran H, Shi Y, Kim Y, Emery S. “Sweeter Than a Swisher”: amount and themes of little cigar and cigarillo content on Twitter. Tob Control 2016; 25 (Suppl 1): i75-i82
  • 46 Daniulaityte R, Chen L, Lamy FR, Carlson RG, Thirunarayan K, Sheth A. “When ’Bad’ is ’Good’”: Identifying Personal Communication and Sentiment in Drug-Related Tweets. JMIR Public Health Surveill 2016; 2 (02) e162
  • 47 Kavuluru R, Sabbir AKM. Toward automated e-cigarette surveillance: Spotting e-cigarette proponents on Twitter. J Biomed Inform 2016; 61: 19-26
  • 48 Alvaro N, Conway M, Doan S, Lofi C, Overington J, Collier N. Crowdsourcing Twitter annotations to identify first-hand experiences of prescription drug use. J Biomed Inform 2015; 58: 280-7
  • 49 Kim A, Hopper T, Simpson S, Nonnemaker J, Lieberman A, Hansen H. , et al. Using Twitter data to gain insights into e-cigarette marketing and locations of use: An infoveillance study. J Med Internet Res 2015; 17 (11) e251
  • 50 Park S, Hong S. Identification of primary medication concerns regarding thyroid hormone replacement therapy From online patient medication reviews: text mining of social network data. J Med Internet Res 2018; 20 (10) e11085
  • 51 Sarker A, Belousov M, Friedrichs J, Hakala K, Kiritchenko S, Mehryary F. , et al. Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task. J Am Med Inform Assoc 2018; 25 (10) 1274-83
  • 52 Bollegala D, Maskell S, Sloane R, Hajne J, Pirmohamed M. Causality patterns for detecting adverse drug reactions from social media: text mining approach. JMIR Public Health Surveill 2018; 4 (02) e51
  • 53 Kagashe I, Yan Z, Suheryani I. Enhancing seasonal influenza surveillance: topic analysis of widely used medicinal drugs using Twitter data. J Med Internet Res 2017; 19 (09) e315
  • 54 Cocos A, Fiks A, Masino A. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. J Am Med Inform Assoc 2017; 24 (04) 813-21
  • 55 Sarker A, Gonzalez G. A corpus for mining drug-related knowledge from Twitter chatter: Language models and their utilities. Data Brief 2017; 10: 122-131
  • 56 Sarker A, O’Connor K, Ginn R, Scotch M, Smith K, Malone D. , et al. Social media mining for toxicovigilance: automatic monitoring of prescription medication abuse from Twitter. Drug Saf 2016; 39 (03) 231-40
  • 57 Young SD, Mercer N, Weiss RE, Torrone EA, Aral SO. Using social media as a tool to predict syphilis. Prev Med 2018; 109: 58-61
  • 58 Patton DU, MacBeth J, Schoenebeck S, Shear K, McKeown K. Accommodating grief on Twitter: an analysis of expressions of grief among gang involved youth on Twitter using qualitative analysis and natural language processing. Biomed Inform Insights 2018; 10: 1178222618763155
  • 59 Ernala S, Labetoulle T, Bane F, Bimbaum M, Rizvi A, Kane J. , et al. Characterizing Audience Engagement and Assessing Its Impact on Social Media Disclosures of Mental Illnesses. In: Proceedings of the Twelfth International Conference on Web and Social Media; 2018. p. 62-71
  • 60 Guntuku SC, Ramsay JR, Merchant RM, Ungar LH. Language of ADHD in adults on social media. J Atten Disord 2017 Nov:1087054717738083
  • 61 Birnbaum M, Ernala S, Rizvi A, De Choudhury M, Kane J. A collaborative approach to identifying social media markers of schizophrenia by employing machine learning and clinical appraisals. J Med Internet Res 2017; 19 (08) e289
  • 62 Doan S, Ritchart A, Perry N, Chaparro J, Conway M. How do You relax When You’re stressed? a content analysis and infodemiology study of stress-related tweets. JMIR Public Health Surveill 2017; 3 (02) e35
  • 63 Loveys K, Crutchley P, Wyatt E, Coppersmith G. Small but mighty: affective micropatterns for quantifying mental health from social media language. In: Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology – From Linguistic Signal to Clinical Reality. Association for Computational Linguistics; 2017. p. 85-95. Available from: http://aclweb.org/anthology/W17-3110
  • 64 Jones N, Wojcik S, Sweeting J, Silver RC. Tweeting negative emotion: an investigation of Twitter data in the aftermath of violence on college campuses. Psychol Methods 2016; 21 (04) 526-41
  • 65 Mowery D, Park A, Bryan C, Conway M. Towards Automatically Classifying Depressive Symptoms from Twitter Data for Population Health. In: Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES). The COLING 2016 Organizing Committee; 2016. p. 182-191. Available from: http://aclweb.org/anthology/W16-4320
  • 66 Faasse K, Chatman C, Martin L. A comparison of language use in pro- and anti- vaccination comments in response to a high profile Facebook post. Vaccine 2016; 34 (47) 5808-5814
  • 67 Abdul-Mageed M, Buffone A, Peng H, Eichstaedt J, Ungar L. Recognizing pathogenic empathy in social media. In: Proceedings of the Eleventh International Conference on Web and Social Media; 2017. p. 448-51
  • 68 Zhang S, Grave E, Sklar E, Elhadad N. Longitudinal analysis of discussion topics in an online breast cancer community using convolutional neural networks. J Biomed Inform 2017; 69: 1-9
  • 69 Zhang S, Qiu L, Chen F, Zhang W, Yu Y, Elhadad N. “We make choices we think are going to save us”: Debate and stance identification for online breast cancer CAM discussions. Proc Int World Wide Web Conf 2017 Apr; 2017, 1073-81
  • 70 Khanpour H, Caragea C. Fine-grained emotion detection in health-related online posts. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics; 2018. p. 1160-6. Available from: http://aclweb.org/anthology/D18-1147
  • 71 Zhang S, Kang T, Qiu L, Zhang W, Yu Y, Elhadad N. Cataloguing treatments discussed and used in online autism communities. Proc Int World Wide Web Conf 2017; 2017: 123-31
  • 72 Khanpour H, Caragea C, Biyani P. Identifying empathetic messages in online health communities. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Asian Federation of Natural Language Processing; 2016. p. 246-51. Available from: http://aclweb.org/anthology/I17-2042
  • 73 Franco-Penya H, Mamani Sanchez L. Text-based experiments for predicting mental health emergencies in online web forum posts. In: Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology. Association for Computational Linguistics; 2016. p. 193-7. Available from: http://aclweb.org/anthology/W16-0327
  • 74 Asgari E, Nasiriany S, Mofrad M. Text Analysis and Automatic Triage of Posts in a Mental Health Forum. In: Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology. Association for Computational Linguistics; 2016. p. 153-7. Available from: http://aclweb.org/anthology/W16-0318
  • 75 Cohan A, Young S, Goharian N. Triaging mental health forum posts. In: Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology. Association for Computational Linguistics; 2016. p. 143-7. Available from: http://aclweb.org/anthology/W16-0316
  • 76 Cheng Q, Li TM, Kwok CL, Zhu T, Yip PS. Assessing suicide risk and emotional distress in Chinese social media: a text mining and machine learning study. J Med Internet Res 2017; 19 (07) e243
  • 77 Guo H, Na X, Hou L, Li J. Classifying Chinese Questions Related to Health Care Posted by Consumers Via the Internet. J Med Internet Res 2017; 19 (06) e220
  • 78 Boden M. Mind as Machine: A History of Cognitive Science. OUP; 2006
  • 79 Tausczik Y, Pennebaker J. The psychological meaning of words: LIWC and computerized text analysis methods. J Lang Soc Psychol 2010; 29 (01) 24-54
  • 80 Brownstein CJ, Sand F. HealthMap: the development of automated real-time internet surveillance for epidemic intelligence. Euro Surveill 2007; 12 (11) E071129.5
  • 81 Collier N, Doan S, Kawazoe A, Matsuda-Goodwin R, Conway M, Tateno Y. , et al. BioCaster: detecting public health rumors with a Web-based text mining system. Bioinformatics 2008; 24 (24) 2940-1
  • 82 Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res 2009; 11 (01) e11
  • 83 Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection-harnessing the Web for public health surveillance. N Engl J Med 2009; 360 (21) 2153-5 , 2157
  • 84 Salathe M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, Buckee C. , et al. Digital epidemiology. PLoS Comput Biol 2012; 8 (07) e1002616
  • 85 Singh T, Arrazola RA, Corey CG, Husten CG, Neff LJ, Homa DM. , et al. Tobacco use among middle and high school students-United States, 2011-2015. MMWR Morb Mortal Wkly Rep 2016; 65 (14) 361-7
  • 86 Grana R, Benowitz N, Glantz SA. E-cigarettes: a scientific review. Circulation 2014; 129 (19) 1972-86
  • 87 McNeill A, Brose L, Calder R, Hitchman S. E-cigarettes: An Evidence Update - Report Commissioned by Public Health England. Public Health England; 2015
  • 88 Polosa R. E-cigarettes: Public Health England’s evidence based confusion?. Lancet 2015; 386 (10000): 1237-8
  • 89 Pacula RL, Powell D, Heaton P, Sevigny EL. Assessing the effects ofmedical marijuana laws on marijuana use: the devil is in the details. J Policy Anal Manage 2015; 34 (01) 7-31
  • 90 Hasin DS, Shmulewitz D, Sarvet AL. Time trends in US cannabis use and cannabis use disorders overall and by sociodemographic subgroups: a narrative review and new findings. Am J Drug Alcohol Abuse 2019; 1-21
  • 91 GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018; 392 (10152): 1015-35
  • 92 Paul M, Sarker A, Brownstein J, Nikfarjam A, Scotch M, Smith K. , et al. Social media mining for public health monitoring and surveillance. In: Proceedings of the Pacific Symposium on Biocomputing 2016; 2016. p. 468-79
  • 93 Bigeard E, Grabar N, Thiessard F. Detection and analysis of drug misuses a study based on social media messages . Front Pharmacol 2018; 9: 791
  • 94 Manchikanti L, Helm S, Fellows B, Janata J, Pampati V, Grider J. , et al. Opioid epidemic in the United States. Pain Physician 2012; 15 (3 Suppl): ES9-38
  • 95 Vigo D, Thornicroft G, Atun R. Estimating the true global burden of mental illness. Lancet Psychiatry 2016; 3 (02) 171-8
  • 96 Conway M, O’Connor D. Social media, big data, and mental health: current advances and ethical implications. Curr Opin Psychol 2016; 9: 77-82
  • 97 Ginzburg K, Ein-Dor T, Solomon Z. Comorbidity of posttraumatic stress disorder, anxiety and depression: a 20-year longitudinal study of war veterans. J Affect Disord 2010; 123 (1-3): 249-57
  • 98 Nock M. editor. The Oxford Handbook of Suicide and Self-Injury. OUP; 2014
  • 99 Bryan C, Butner J, Sinclair S, Bryan AB, Hesse C, Rose A. Predictors of emerging suicide death among military personnel on social media networks. Suicide Life Threat Behav 2018; 48 (04) 413-30
  • 100 Hwang JD, Hollingshead K. Crazy mad nutters: the language of mental health. In: Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology. Association for Computational Linguistics; 2016. p. 52-62. Available from: http://aclweb.org/anthology/W16-0306
  • 101 Hibbin RA, Samuel G, Derrick GE. From “a fair game” to “a form of covert research”: research ethics committee members’ differing notions of consent and potential risk to participants within social media research. J Empir Res Hum Res Ethics 2018; 13 (02) 149-159
  • 102 Mikal J, Hurst S, Conway M. Ethical issues in using Twitter for population-level depression monitoring: a qualitative study. BMC Med Ethics 2016; 17: 22
  • 103 Benton A, Coppersmith G, Dredze M. Ethical research protocols for social media health research. In: Proceedings of the First ACL Workshop on Ethics in Natural Language Processing. Association for Computational Linguistics; 2017. p. 94-102. Available from: http://aclweb.org/anthology/W17-1612
  • 104 Vayena E, Salathé M, Madoff LC, Brownstein JS. Ethical challenges of big data in public health. PLoS Comput Biol 2015; 11 (02) e1003904
  • 105 Goffman E. Stigma: Notes on the Management of Spoiled Identity. A Spectrum book. Englewood Cliffs, N.J.: Prentice-Hall; 1963
  • 106 Golder S, Ahmed S, Norman G, Booth A. Attitudes toward the ethics of research using social media: a systematic review. J Med Internet Res 2016; 19 (06) e195
  • 107 O’Connor D. The apomediated world: regulating research when social media has changed research. Journal of Law, Medicine, and Ethics 2013; 41 (02) 470-83
  • 108 Adams N, Artigiani E, Wish E. Choosing your platform for social media drug research and improving your keyword filter list. Journal of Drug Issues 2019;1–16