Hamostaseologie 2019; 39(01): 006-019
DOI: 10.1055/s-0038-1676823
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Microvascular Thrombosis and Ischaemic Limb Losses in Critically Ill Patients

Theodore E. Warkentin
1   Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
2   Transfusion Medicine, Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
3   Service of Clinical Hematology, Hamilton Health Sciences, Hamilton General Hospital, Hamilton, Ontario, Canada
4   McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
5   Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
› Author Affiliations
Further Information

Publication History

20 September 2018

02 November 2018

Publication Date:
09 January 2019 (online)

Abstract

Relatively little scientific attention has been given to the small subset of critically ill patients with circulatory shock who develop ischaemic limb losses (symmetrical peripheral gangrene [SPG]). The clinical picture consists of acral (distal extremity) tissue necrosis involving lower limbs in a largely symmetrical fashion and with detectable arterial pulses; in one-third of patients the upper extremities are also affected (potential for four-limb amputations). The laboratory picture includes thrombocytopenia, coagulopathy, and normoblastemia (circulating nucleated red blood cells). The explanation for limb losses is microvascular thrombosis caused by disseminated intravascular coagulation usually secondary to cardiogenic or septic shock. A common myth is that vasopressors cause the ischaemic limb injury. However, the more likely explanation is failure of the natural anticoagulant systems (protein C and antithrombin) to downregulate thrombin generation in the microvasculature. This is because more than 90% of patients with SPG have preceding ‘shock liver’, which occurs 2 to 5 days (median, 3 days) prior to ischaemic limb injury, with impaired hepatic production of protein C and antithrombin.

Zusammenfassung

Die kleine Gruppe kritisch kranker Patienten mit Herz-Kreislauf-Schock und ischämisch bedingter Extremitäten-Gangrän hat bislang relativ wenig wissenschaftliche Aufmerksamkeit erfahren. Das klinische Bild besteht aus ischämischen Gewebsnekrosen der Akren trotz nachweisbarem arteriellen Puls. Die Nekrosen treten typischerweise symmetrisch und vor allem an den unteren Extremitäten auf. Bei ca. einem Drittel der Patienten sind auch die Finger/Hände betroffen (Risiko der Amputation aller vier Extremitäten). Die Laborergebnisse zeigen die Konstellation von Thrombozytopenie, Koagulopathie und zirkulierenden Normoblasten (kernhaltigen Erythrozyten). Der Extremitätenverlust wird verursacht durch mikrovaskuläre Thrombosen bei disseminierter Koagulopathie infolge eines kardiogenen oder septischen Schocks. Ein weit verbreiteter Irrglaube ist, dass Vasopressoren eine Ischämie der Akren/Extremitäten verursachen. Die viel wahrscheinlichere Erklärung dürfte sein, dass ein Versagen der natürlichen antikoagulatorischen Systeme (Protein C, Antithrombin) aufgrund einer Leberschädigung dazu führt, dass die Thrombinbildung in der Mikrozirkulation nicht ausreichend gehemmt wird. Mehr als 90% der Patienten mit symmetrischer Extremitäten-Gangrän haben eine ‘Schockleber’, die 2–5 Tage (im Median 3 Tage) vor Entstehung der Extremitäten-Gangrän auftritt und zu mit eingeschränkter Synthese von Protein C und Antithrombin führt.

 
  • References

  • 1 Warkentin TE. Ischemic limb gangrene with pulses. N Engl J Med 2015; 373 (07) 642-655
  • 2 Perry CB, Davie TB. Symmetrical gangrene in cardiac failure. BMJ 1939; 1 (4070): 15
  • 3 Caserta SJ, Metz R, Anton M. Symmetrical peripheral gangrene in myocardial infarction; report of a case. N Engl J Med 1956; 254 (12) 568-570
  • 4 Ratnoff OD, Nebehay WG. Multiple coagulative defects in a patient with the Waterhouse–Friderichsen syndrome. Ann Intern Med 1962; 56: 627-632
  • 5 Rapaport SI, Tatter D, Coeur-Barron N, Hjort PF. Pseudomonas septicemia with intravascular clotting leading to generalized Shwartzman reaction. N Engl J Med 1964; 271: 80-84
  • 6 Corrigan Jr JJ, Ray WL, May N. Changes in the blood coagulation system associated with septicemia. N Engl J Med 1968; 279 (16) 851-856
  • 7 Stossel TP, Levy R. Intravascular coagulation associated with pneumococcal bacteremia and symmetrical peripheral gangrene. Arch Intern Med 1970; 125 (05) 876-878
  • 8 Chaudhuri AK, McKenzie P. Peripheral gangrene after measles. BMJ 1970; 4 (5736): 679-680
  • 9 Molos MA, Hall JC. Symmetrical peripheral gangrene and disseminated intravascular coagulation. Arch Dermatol 1985; 121 (08) 1057-1061
  • 10 Knight Jr TT, Gordon SV, Canady J, Rush DS, Browder W. Symmetrical peripheral gangrene: a new presentation of an old disease. Am Surg 2000; 66 (02) 196-199
  • 11 Musher DM. Cutaneous and soft-tissue manifestations of sepsis due to gram-negative enteric bacilli. Rev Infect Dis 1980; 2 (06) 854-866
  • 12 Robboy SJ, Major MC, Colman RW, Minna JD. Pathology of disseminated intravascular coagulation (DIC). Analysis of 26 cases. Hum Pathol 1972; 3 (03) 327-343
  • 13 Robboy SJ, Mihm MC, Colman RW, Minna JD. The skin in disseminated intravascular coagulation. Prospective analysis of thirty-six cases. Br J Dermatol 1973; 88 (03) 221-229
  • 14 Vincent JL, Nadel S, Kutsogiannis DJ. , et al. Drotrecogin alfa (activated) in patients with severe sepsis presenting with purpura fulminans, meningitis, or meningococcal disease: a retrospective analysis of patients enrolled in recent clinical studies. Crit Care 2005; 9 (04) R331-R343
  • 15 Johansen K, Hansen Jr ST. Symmetrical peripheral gangrene (purpura fulminans) complicating pneumococcal sepsis. Am J Surg 1993; 165 (05) 642-645
  • 16 Dünser MW, Mayr AJ, Tür A. , et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med 2003; 31 (05) 1394-1398
  • 17 Russell JA, Walley KR, Singer J. , et al; VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 2008; 358 (09) 877-887
  • 18 Ghosh SK, Bandyopadhyay D, Ghosh A. Symmetrical peripheral gangrene: a prospective study of 14 consecutive cases in a tertiary-care hospital in eastern India. J Eur Acad Dermatol Venereol 2010; 24 (02) 214-218
  • 19 Davis MD, Dy KM, Nelson S. Presentation and outcome of purpura fulminans associated with peripheral gangrene in 12 patients at Mayo Clinic. J Am Acad Dermatol 2007; 57 (06) 944-956
  • 20 Hayes MA, Yau EHS, Hinds CJ, Watson JD. Symmetrical peripheral gangrene: association with noradrenaline administration. Intensive Care Med 1992; 18 (07) 433-436
  • 21 Joynt G, Doedens L, Lipman J, Bothma P. High-dose adrenaline with low systemic vascular resistance and symmetrical peripheral gangrene. S Afr J Surg 1996; 34 (02) 99-101
  • 22 Gamper G, Havel C, Arrich J. , et al. Vasopressors for hypotensive shock. Cochrane Database Syst Rev 2016; 2: CD003709
  • 23 Warkentin TE. Symmetrical peripheral gangrene: mechanisms for limb loss in the ICU in patients with retained pulses. Clin Pulm Med 2018; 25 (02) 61-66
  • 24 Waseem N, Chen PH. Hypoxic hepatitis: a review and clinical update. J Clin Transl Hepatol 2016; 4 (03) 263-268
  • 25 Siegal DM, Cook RJ, Warkentin TE. Acute hepatic necrosis and ischemic limb necrosis. N Engl J Med 2012; 367 (09) 879-881
  • 26 Warkentin TE. Heparin-induced thrombocytopenia in critically ill patients. Semin Thromb Hemost 2015; 41 (01) 49-60
  • 27 Constantino BT, Cogionis B. Nucleated RBCs—significance in the peripheral blood film. Lab Med 2000; 31 (04) 223-229
  • 28 Ward HP, Holman J. The association of nucleated red cells in the peripheral smear with hypoxemia. Ann Intern Med 1967; 67 (06) 1190-1194
  • 29 Warkentin TE. Anticoagulant failure in coagulopathic patients: PTT confounding and other pitfalls. Expert Opin Drug Saf 2014; 13 (01) 25-43
  • 30 Warkentin TE. Ischemic limb gangrene with pulses. N Engl J Med 2015; 373 (24) 2386-2388
  • 31 White B, Livingstone W, Murphy C, Hodgson A, Rafferty M, Smith OP. An open-label study of the role of adjuvant hemostatic support with protein C replacement therapy in purpura fulminans-associated meningococcemia. Blood 2000; 96 (12) 3719-3724
  • 32 Powars D, Larsen R, Johnson J. , et al. Epidemic meningococcemia and purpura fulminans with induced protein C deficiency. Clin Infect Dis 1993; 17 (02) 254-261
  • 33 Hayakawa M, Gando S, Ono Y, Wada T, Yanagida Y, Sawamura A. Fibrinogen level deteriorates before other routine coagulation parameters and massive transfusion in the early phase of severe trauma: a retrospective observational study. Semin Thromb Hemost 2015; 41 (01) 35-42
  • 34 Parasnis H, Raje B, Hinduja IN. Relevance of plasma fibrinogen estimation in obstetric complications. J Postgrad Med 1992; 38 (04) 183-185
  • 35 Warkentin TE, Elavathil LJ, Hayward CPM, Johnston MA, Russett JI, Kelton JG. The pathogenesis of venous limb gangrene associated with heparin-induced thrombocytopenia. Ann Intern Med 1997; 127 (09) 804-812
  • 36 Warkentin TE, Cook RJ, Sarode R, Sloane DA, Crowther MA. Warfarin-induced venous limb ischemia/gangrene complicating cancer: a novel and clinically distinct syndrome. Blood 2015; 126 (04) 486-493
  • 37 Warkentin TE, Pai M. Shock, acute disseminated intravascular coagulation, and microvascular thrombosis: is ‘shock liver’ the unrecognized provocateur of ischemic limb necrosis?. J Thromb Haemost 2016; 14 (02) 231-235
  • 38 Safdar H, Cheung KL, Salvatori D. , et al. Acute and severe coagulopathy in adult mice following silencing of hepatic antithrombin and protein C production. Blood 2013; 121 (21) 4413-4416
  • 39 Fijnvandraat K, Derkx B, Peters M. , et al. Coagulation activation and tissue necrosis in meningococcal septic shock: severely reduced protein C levels predict a high mortality. Thromb Haemost 1995; 73 (01) 15-20
  • 40 Warkentin TE. Coumarin-induced skin necrosis and venous limb gangrene. In: Marder VJ, Aird WC, Bennett JS, Schulman S, White GC. , eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2013: 1308-1317
  • 41 Kobayashi N, Maekawa T, Takada M, Tanaka H, Gonmori H. Criteria for diagnosis of DIC based on the analysis of clinical and laboratory findings in 345 DIC patients collected by the Research Committee on DIC in Japan. Bibl Haematol 1983; 49 (49) 265-275
  • 42 Taylor Jr FB, Toh CH, Hoots WK, Wada H, Levi M. ; Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost 2001; 86 (05) 1327-1330
  • 43 Takemitsu T, Wada H, Hatada T. , et al. Prospective evaluation of three different diagnostic criteria for disseminated intravascular coagulation. Thromb Haemost 2011; 105 (01) 40-44
  • 44 Gando S, Iba T, Eguchi Y. , et al; Japanese Association for Acute Medicine Disseminated Intravascular Coagulation (JAAM DIC) Study Group. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria. Crit Care Med 2006; 34 (03) 625-631
  • 45 Gando S, Saitoh D, Ogura H. , et al; Japanese Association for Acute Medicine Disseminated Intravascular Coagulation (JAAM DIC) Study Group. Disseminated intravascular coagulation (DIC) diagnosed based on the Japanese Association for Acute Medicine criteria is a dependent continuum to overt DIC in patients with sepsis. Thromb Res 2009; 123 (05) 715-718
  • 46 Singer M, Deutschman CS, Seymour CW. , et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
  • 47 Iba T, Nisio MD, Levy JH, Kitamura N, Thachil J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey. BMJ Open 2017; 7 (09) e017046
  • 48 Iba T, Arakawa M, Di Nisio M. , et al. Newly proposed sepsis-induced coagulopathy precedes International Society on Thrombosis and Haemostasis overt-disseminated intravascular coagulation and predicts high mortality. J Intensive Care Med 2018 (e-pub ahead of print). doi: 10.1177/0885066618773679
  • 49 Umemura Y, Yamakawa K, Hayakawa M, Hamasaki T, Fujimi S. ; Japan Septic Disseminated Intravascular Coagulation (J-Septic DIC) Study Group. Screening itself for disseminated intravascular coagulation may reduce mortality in sepsis: a nationwide multicenter registry in Japan. Thromb Res 2018; 161: 60-66
  • 50 Iba T, Di Nisio M, Thachil J. , et al. A proposal of the modification of Japanese Society on Thrombosis and Hemostasis (JSTH) disseminated intravascular coagulation (DIC) diagnostic criteria for sepsis-associated DIC. Clin Appl Thromb Hemost 2018; 24 (03) 439-445
  • 51 Bell WR, Starksen NF, Tong S, Porterfield JK. Trousseau's syndrome. Devastating coagulopathy in the absence of heparin. Am J Med 1985; 79 (04) 423-430
  • 52 Rhodes A, Evans LE, Alhazzani W. , et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017; 43 (03) 304-377
  • 53 Zarychanski R, Abou-Setta AM, Kanji S. , et al; Canadian Critical Care Trials Group. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med 2015; 43 (03) 511-518
  • 54 Iba T, Thachil J. Present and future of anticoagulant therapy using antithrombin and thrombomodulin for sepsis-associated disseminated intravascular coagulation: a perspective from Japan. Int J Hematol 2016; 103 (03) 253-261
  • 55 Allingstrup M, Wetterslev J, Ravn FB, Møller AM, Afshari A. Antithrombin III for critically ill patients. Cochrane Database Syst Rev 2016; 2: CD005370
  • 56 Warren BL, Eid A, Singer P. , et al. Caring for the critically ill patient. High-dose antithrombin in severe sepsis: a randomized controlled trial. JAMA 2001; 286 (15) 1869-1878
  • 57 Kienast J, Juers M, Wiedermann CJ. , et al; KyberSept investigators. Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. J Thromb Haemost 2006; 4 (01) 90-97
  • 58 Umemura Y, Yamakawa K, Ogura H, Yuhara H, Fujimi S. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis: a meta-analysis of randomized controlled trials. J Thromb Haemost 2016; 14 (03) 518-530
  • 59 Hayakawa M, Saito S, Uchino S. , et al. Characteristics, treatments, and outcomes of severe sepsis of 3195 ICU-treated adult patients throughout Japan during 2011–2013. J Intensive Care 2016; 4: 44
  • 60 Tagami T, Matsui H, Horiguchi H, Fushimi K, Yasunaga H. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost 2014; 12 (09) 1470-1479
  • 61 Yamakawa K, Umemura Y, Hayakawa M. , et al; Japan Septic Disseminated Intravascular Coagulation (J-Septic DIC) Study Group. Benefit profile of anticoagulant therapy in sepsis: a nationwide multicentre registry in Japan. Crit Care 2016; 20 (01) 229
  • 62 Umemura Y, Yamakawa K. Optimal patient selection for anticoagulant therapy in sepsis: an evidence-based proposal from Japan. J Thromb Haemost 2018; 16 (03) 462-464
  • 63 Ito T, Maruyama I. Thrombomodulin: protectorate God of the vasculature in thrombosis and inflammation. J Thromb Haemost 2011; 9 (Suppl. 01) 168-173
  • 64 Saito H, Maruyama I, Shimazaki S. , et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost 2007; 5 (01) 31-41
  • 65 Vincent JL, Ramesh MK, Ernest D. , et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med 2013; 41 (09) 2069-2079
  • 66 ClinicalTrails.gov. Available at: http://clinicaltrials.gov/ct2/show/NCT01598831?term=ART-123&rank=2 . Accessed October 21, 2018
  • 67 Yamakawa K, Ogura H, Fujimi S. , et al. Recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis. Intensive Care Med 2013; 39 (04) 644-652
  • 68 Tagami T, Matsui H, Horiguchi H, Fushimi K, Yasunaga H. Recombinant human soluble thrombomodulin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation: an observational nationwide study. J Thromb Haemost 2015; 13 (01) 31-40
  • 69 Yoshimura J, Yamakawa K, Ogura H. , et al. Benefit profile of recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis. Crit Care 2015; 19: 78
  • 70 Burlage LC, Bos S, Adelmeijer J, Sakai T, Porte RJ, Lisman T. Plasma from patients undergoing liver transplantation is resistant to anticoagulant activity of soluble thrombomodulin (ART-123). Liver Transpl 2018 (e-pub ahead of print). doi: 10.1002/lt.25318
  • 71 Wada H, Ohiwa M, Kaneko T. , et al. Plasma thrombomodulin as a marker of vascular disorders in thrombotic thrombocytopenic purpura and disseminated intravascular coagulation. Am J Hematol 1992; 39 (01) 20-24
  • 72 Iba T, Yagi Y, Kidokoro A, Fukunaga M, Fukunaga T. Increased plasma levels of soluble thrombomodulin in patients with sepsis and organ failure. Surg Today 1995; 25 (07) 585-590
  • 73 Dellinger RP, Schorr CA, Levy MM. A users' guide to the 2016 surviving sepsis guidelines. Intensive Care Med 2017; 43 (03) 299-303