Adipositas - Ursachen, Folgeerkrankungen, Therapie 2018; 12(04): 193-197
DOI: 10.1055/s-0038-1676677
Übersichtsarbeit
Georg Thieme Verlag KG Stuttgart · New York

True Colours – Heterogenität des Fettgewebes

True colours – heterogeneity of adipose tissue
P. Fischer-Posovszky
1   Universitätsklinikum Ulm, Klinik für Kinder- und Jugendmedizin (Ärztlicher Direktor: Prof. Dr. med. K.-M. Debatin), Sektion Pädiatrische Endokrinologie und Diabetologie (Leiter: Prof. Dr. med. M. Wabitsch)
,
D. Tews
1   Universitätsklinikum Ulm, Klinik für Kinder- und Jugendmedizin (Ärztlicher Direktor: Prof. Dr. med. K.-M. Debatin), Sektion Pädiatrische Endokrinologie und Diabetologie (Leiter: Prof. Dr. med. M. Wabitsch)
› Author Affiliations
Further Information

Publication History

Publication Date:
10 January 2019 (online)

Zusammenfassung

Das Fettgewebe ist ein dynamisches endokrines Organ. Es spiegelt die Energiehomöostase des Körpers wider und steht über seine Sekretionsprodukte in ständigem Informationsaustausch mit anderen Organsystemen. Das Fettgewebe zeichnet sich durch eine beachtliche anatomische, zelluläre und funktionelle Heterogenität aus, welche sich in einer Vielzahl unterschiedlicher Typen von Fettzellen ausdrückt. Dieser Übersichtsartikel stellt die verschiedenen „Farbnuancen” des Fettgewebes vor und diskutiert ihre funktionelle Relevanz im Organismus.

Summary

Adipose tissue is a dynamic endocrine organ which reflects the energy homeostasis of the organism and is in permanent cross-talk with other organ systems. Its enormous anatomical, cellular and functional heterogeneity is expressed in a variety of different adipocyte types, which are commonly described by the macroscopic color appearance of the tissue. This review presents the different shades of adipose tissue and discusses their functional relevance for the organism.

 
  • Literatur

  • 1 Fischer-Posovszky P, Wabitsch M. Entwicklung und Funktion des Fettgewebes. Monatsschrift Kinderheilkd 2004; 152 (08) 834-42.
  • 2 Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE. et al. White fat progenitor cells reside in the adipose vasculature. Science 2008; 322 (5901): 583-6.
  • 3 Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes Hindawi 2011; 490650.
  • 4 Cook A, Cowan C. Adipose. In: Stem Book. 2009
  • 5 Billon N, Iannarelli P, Monteiro MC, Glavieux-Pardanaud C, Richardson WD, Kessaris N. et al. The generation of adipocytes by the neural crest. Development 2007; 134 (12) 2283-92.
  • 6 Merklin RJ. Growth and distribution of human fetal brown fat. Anat Rec 1974; 178 (03) 637-45.
  • 7 Moragas A, Torán N. Prenatal development of brown adipose tissue in man. A morphometric and biomathematical study. Biol Neonate 1983; 43 (1–2): 80-5.
  • 8 Zancanaro C, Carnielli VP, Moretti C, Benati D, Gamba P. An ultrastructural study of brown adipose tissue in pre-term human new-borns. Tissue Cell 1995; 27 (03) 339-48.
  • 9 Drubach LA, Palmer 3rd EL, Connolly LP, Baker A, Zurakowski D, Cypess AM. Pediatric Brown Adipose Tissue: Detection, Epidemiology, and Differences from Adults. J Pediatr 2011; 159 (06) 939-44.
  • 10 Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TAL, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr 2012; 160 (04) 604-609 e1.
  • 11 Ponrartana S, Hu HH, Gilsanz V. On the relevance of brown adipose tissue in children. Ann N Y Acad Sci 2013; 1302: 24-9.
  • 12 Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 2009; 23 (09) 3113-20.
  • 13 Heaton JM. The distribution of brown adipose tissue in the human. J Anat 1972; 112 (Pt 1): 35-9.
  • 14 Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014; 156 (1–2): 20-44.
  • 15 Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84 (01) 277-359.
  • 16 Stuart JA, Harper JA, Brindle KM, Jekabsons MB, Brand MD. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochem J 2001; 356 (Pt 3): 779-89.
  • 17 Divakaruni AS, Humphrey DM, Brand MD. Fatty acids change the conformation of uncoupling protein 1 (UCP1). J Biol Chem 2012; 287 (44) 36845-53.
  • 18 Muzik O, Mangner TJ, Granneman JG. Assessment of Oxidative Metabolism in Brown Fat Using {PET} Imaging. Front Endocrinol (Lausanne). 2012 03. 15 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22649408.
  • 19 Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 2012; 122 (02) 545-52.
  • 20 Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-HH. et al. Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell 2012; 150 (02) 366-76.
  • 21 Rosenwald M, Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 2014; 03 (01) 4-9.
  • 22 Rosen CJ, Bouxsein ML. Mechanisms of disease: Is osteoporosis the obesity of bone?. Nature Clinical Practice Rheumatology 2006; 35-43.
  • 23 Scheller EL, Rosen CJ. What’s the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 2014; 1311 (01) 14-30.
  • 24 Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B. et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 2015; 06: 7808.
  • 25 Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cint S. White, brown and pink adipocytes: The extraordinary plasticity of the adipose organ. Eur J Endocrinol 2014; 170: 5.
  • 26 Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N. et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 2008; 215 (01) 210-22.
  • 27 Maurizi G, Poloni A, Mattiucci D, Santi S, Maurizi A, Izzi V. et al. Human White Adipocytes Convert Into “Rainbow” Adipocytes In Vitro. J Cell Physiol 2017; 232 (10) 2887-99.
  • 28 Tsiloulis T, Watt MJ. Exercise and the Regulation of Adipose Tissue Metabolism. Prog Mol Biol Transl Sci. Academic Press 2015; 135: 175-201.
  • 29 Lynes MD, Tseng YH. Deciphering adipose tissue heterogeneity. Ann N Y Acad Sci 2017; 1-16.
  • 30 Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O. et al. Dynamics of fat cell turnover in humans. Nature 2008; 453 (7196): 783-7.
  • 31 Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL. et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science ({IFATS}) and the International. Cytotherapy 2013; 15 (06) 641-8.
  • 32 Tews D, Schwar V, Scheithauer M, Weber T, Fromme T, Klingenspor M. et al. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 2014; 395 (1–2): 41-50.
  • 33 Tews D, Fromme T, Keuper M, Hofmann SM, Debatin KM, Klingenspor M. et al. Teneurin-2 (TENM2) deficiency induces UCP1 expression in differentiating human fat cells. Mol Cell Endocrinol 2017; 443: 106-113.
  • 34 Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542 (7640): 177-85.
  • 35 Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35 (04) 473-93.
  • 36 Garretson JT, Szymanski LA, Schwartz GJ, Xue B, Ryu V, Bartness TJ. Lipolysis sensation by white fat afferent nerves triggers brown fat thermogenesis. Mol Metab 2016; 05 (08) 626-34.
  • 37 Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?. Br J Nutr 2008; 100 (02) 227-35.
  • 38 Pham TX, Lee J-Y. Epigenetic Regulation of Adipokines. Int J Mol Sci 2017; 18: 08.
  • 39 Macartney-Coxson D, Benton MC, Blick R, Stubbs RS, Hagan RD, Langston MA. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin Epigenetics. BioMed Central 2017; 09: 48.