Semin Liver Dis 2019; 39(01): 053-069
DOI: 10.1055/s-0038-1676121
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

TGF-β as Multifaceted Orchestrator in HCC Progression: Signaling, EMT, Immune Microenvironment, and Novel Therapeutic Perspectives

Francesco Dituri
1   National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Italy
,
Serena Mancarella
1   National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Italy
,
Antonio Cigliano
1   National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Italy
,
Annarita Chieti
1   National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Italy
,
Gianluigi Giannelli
1   National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Castellana Grotte, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
26 December 2018 (online)

Abstract

Therapeutic attempts to treat hepatocellular carcinoma (HCC) frequently result in a poor response or treatment failure. The efficacy of approved drugs and survival expectancies is affected by an ample degree of variability that can be explained at least in part by the enormous between-patient cellular and molecular heterogeneity of this neoplasm. Transforming growth factor-β (TGF-β) is hyperactivated in a large fraction of HCCs, where it influences complex interactive networks covering multiple cell types and a plethora of other local soluble ligands, ultimately establishing several malignancy traits. This cytokine boosts the invasiveness of cancerous epithelial cells through promoting the epithelial-to-mesenchymal transition program, but also skews the phenotype of immune cells toward a tumor-supporting status. Here, we discuss recent strategies pursued to offset TGF-β-dependent processes that promote metastatic progression and immune surveillance escape in solid cancers, including HCC. Moreover, we report findings indicating that TGF-β reduces the expression of the proinflammatory factors CCL4 and interleukin-1β (IL-1β in human ex vivo treated HCC tissues. While this is consistent with the anti-inflammatory properties of TGF-β, whether it is an outright tumor promoter or suppressor is still a matter of some debate. Indeed, IL-1β has also been shown to support angiogenesis and cell invasiveness in some cancers. In addition, we describe an inhibitory effect of TGF-β on the secretion of CCL2 and CXCL1 by HCC-derived fibroblasts, which suggests the existence of an indirect stroma-mediated functional link between TGF-β and downstream immunity.

 
  • References

  • 1 Padua D, Massagué J. Roles of TGFbeta in metastasis. Cell Res 2009; 19 (01) 89-102
  • 2 Katz LH, Likhter M, Jogunoori W, Belkin M, Ohshiro K, Mishra L. TGF-β signaling in liver and gastrointestinal cancers. Cancer Lett 2016; 379 (02) 166-172
  • 3 Heldin CH, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol 2016; 8 (08) 1-34
  • 4 Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50 (01) 12-36
  • 5 Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113 (06) 685-700
  • 6 Heldin CH, Moustakas A. Role of Smads in TGFβ signaling. Cell Tissue Res 2012; 347 (01) 21-36
  • 7 Liu F, Pouponnot C, Massagué J. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev 1997; 11 (23) 3157-3167
  • 8 Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-β receptor. Nature 1994; 370 (6488): 341-347
  • 9 Kretzschmar M, Doody J, Massagué J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 1997; 389 (6651): 618-622
  • 10 Zhang Y, Musci T, Derynck R. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Curr Biol 1997; 7 (04) 270-276
  • 11 Chen Y, Lebrun JJ, Vale W. Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci U S A 1996; 93 (23) 12992-12997
  • 12 Chen YG, Liu F, Massague J. Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J 1997; 16 (13) 3866-3876
  • 13 Labbé E, Silvestri C, Hoodless PA, Wrana JL, Attisano L. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 1998; 2 (01) 109-120
  • 14 Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 1998; 394 (6696): 909-913
  • 15 Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012; 13 (10) 616-630
  • 16 Dahl M, Maturi V, Lönn P. , et al. Fine-tuning of Smad protein function by poly(ADP-ribose) polymerases and poly(ADP-ribose) glycohydrolase during transforming growth factor β signaling. PLoS One 2014; 9 (08) e103651
  • 17 Matsuzaki K. Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev 2013; 24 (04) 385-399
  • 18 Yoshida K, Murata M, Yamaguchi T, Matsuzaki K. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review). Int J Oncol 2014; 45 (04) 1363-1371
  • 19 Abou-Shady M, Baer HU, Friess H. , et al. Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma. Am J Surg 1999; 177 (03) 209-215
  • 20 Lin T-H, Shao Y-Y, Chan S-Y, Huang C-Y, Hsu C-H, Cheng A-L. High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib. Clin Cancer Res 2015; 21 (16) 3678-3684
  • 21 Yamazaki K, Masugi Y, Sakamoto M. Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-β signaling in hepatocarcinogenesis. Dig Dis 2011; 29 (03) 284-288
  • 22 Wu K, Ding J, Chen C. , et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 2012; 56 (06) 2255-2267
  • 23 Giannelli G, Villa E, Lahn M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res 2014; 74 (07) 1890-1894
  • 24 Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 2008; 47 (06) 2059-2067
  • 25 Dzieran J, Fabian J, Feng T. , et al. Comparative analysis of TGF-β/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines. PLoS One 2013; 8 (08) e72252
  • 26 Hernanda PY, Chen K, Das AM. , et al. SMAD4 exerts a tumor-promoting role in hepatocellular carcinoma. Oncogene 2015; 34 (39) 5055-5068
  • 27 Martin M, Ancey PB, Cros MP. , et al. Dynamic imbalance between cancer cell subpopulations induced by transforming growth factor beta (TGF-β) is associated with a DNA methylome switch. BMC Genomics 2014; 15 (01) 435
  • 28 Yuan JH, Yang F, Wang F. , et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25 (05) 666-681
  • 29 Zeng C, Wang Y-L, Xie C. , et al. Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis. Oncotarget 2015; 6 (14) 12224-12233
  • 30 Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390 (6659): 465-471
  • 31 Zhang Y, Derynck R. Regulation of Smad signalling by protein associations and signalling crosstalk. Trends Cell Biol 1999; 9 (07) 274-279
  • 32 Nagata H, Hatano E, Tada M. , et al. Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor- suppression in rat hepatocellular carcinoma. Hepatology 2009; 49 (06) 1944-1953
  • 33 Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci 2005; 118 (Pt 16): 3573-3584
  • 34 Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res 2009; 19 (01) 128-139
  • 35 Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev 2013; 24 (03) 285-295
  • 36 Herrera B, García-Álvaro M, Cruz S. , et al. BMP9 is a proliferative and survival factor for human hepatocellular carcinoma cells. PLoS One 2013; 8 (07) e69535
  • 37 García-Álvaro M, Addante A, Roncero C. , et al. BMP9-induced survival effect in liver tumor cells requires p38MAPK activation. Int J Mol Sci 2015; 16 (09) 20431-20448
  • 38 Breitkopf-Heinlein K, Meyer C, König C. , et al. BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 2017; 66 (05) 939-954
  • 39 Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15 (09) 536-554
  • 40 Morris SM, Baek JY, Koszarek A, Kanngurn S, Knoblaugh SE, Grady WM. Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology 2012; 55 (01) 121-131
  • 41 Yang L, Inokuchi S, Roh YS. , et al. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology 2013; 144 (05) 1042-1054.e4
  • 42 Wakefield LM, Hill CS. Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat Rev Cancer 2013; 13 (05) 328-341
  • 43 Akhurst RJ. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb Perspect Biol 2017; 9 (10) a022301
  • 44 Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol 2016; 65 (04) 798-808
  • 45 Zhang X, Fan Q, Li Y. , et al. Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget 2017; 8 (18) 29785-29794
  • 46 Chen J, Zaidi S, Rao S. , et al. Analysis of genomes and transcriptomes of hepatocellular carcinomas identifies mutations and gene expression changes in the transforming growth factor-β pathway. Gastroenterology 2018; 154 (01) 195-210
  • 47 Yan X, Wu J, Jiang Q, Cheng H, Han JJ, Chen YG. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis. J Mol Cell Biol 2018; 10 (01) 48-59
  • 48 Moreno-Càceres J, Caballero-Díaz D, Nwosu ZC. , et al. The level of caveolin-1 expression determines response to TGF-β as a tumour suppressor in hepatocellular carcinoma cells. Cell Death Dis 2017; 8 (10) e3098
  • 49 Chen CL, Tsukamoto H, Liu JC. , et al. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J Clin Invest 2013; 123 (07) 2832-2849
  • 50 Majumdar A, Curley SA, Wu X. , et al. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2012; 9 (09) 530-538
  • 51 Tang Y, Kitisin K, Jogunoori W. , et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 2008; 105 (07) 2445-2450
  • 52 Baek HJ, Lim SC, Kitisin K. , et al. Hepatocellular cancer arises from loss of transforming growth factor beta signaling adaptor protein embryonic liver fodrin through abnormal angiogenesis. Hepatology 2008; 48 (04) 1128-1137
  • 53 Rani B, Malfettone A, Dituri F. , et al. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression. Cell Death Dis 2018; 9 (03) 373
  • 54 Malfettone A, Soukupova J, Bertran E. , et al. Transforming growth factor-β-induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma. Cancer Lett 2017; 392: 39-50
  • 55 Fabregat I, Moreno-Càceres J, Sánchez A. , et al; IT-LIVER Consortium. TGF-β signalling and liver disease. FEBS J 2016; 283 (12) 2219-2232
  • 56 Neuzillet C, Tijeras-Raballand A, Cohen R. , et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 2015; 147: 22-31
  • 57 Fabregat I, Giannelli G. The TGF-β pathway: a pharmacological target in hepatocellular carcinoma?. Hepat Oncol 2017; 4 (02) 35-38
  • 58 Gotzmann J, Mikula M, Eger A. , et al. Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 2004; 566 (01) 9-20
  • 59 Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9 (04) 265-273
  • 60 Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7 (02) 131-142
  • 61 Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119 (06) 1420-1428
  • 62 Heldin CH, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFβ in cancer. FEBS Lett 2012; 586 (14) 1959-1970
  • 63 Oshimori N, Oristian D, Fuchs E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 2015; 160 (05) 963-976
  • 64 Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147 (02) 275-292
  • 65 Jou J, Diehl AM. Epithelial-mesenchymal transitions and hepatocarcinogenesis. J Clin Invest 2010; 120 (04) 1031-1034
  • 66 Soukupova J, Bertran E, Peñuelas-Haro I. , et al. Resminostat induces changes in epithelial plasticity of hepatocellular carcinoma cells and sensitizes them to sorafenib-induced apoptosis. Oncotarget 2017; 8 (66) 110367-110379
  • 67 Wan T, Zhang T, Si X, Zhou Y. Overexpression of EMT-inducing transcription factors as a potential poor prognostic factor for hepatocellular carcinoma in Asian populations: a meta-analysis. Oncotarget 2017; 8 (35) 59500-59508
  • 68 Hugo HJ, Kokkinos MI, Blick T, Ackland ML, Thompson EW, Newgreen DF. Defining the E-cadherin repressor interactome in epithelial-mesenchymal transition: the PMC42 model as a case study. Cells Tissues Organs 2011; 193 (1–2): 23-40
  • 69 Taube JH, Herschkowitz JI, Komurov K. , et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A 2010; 107 (35) 15449-15454
  • 70 Yu M, Bardia A, Wittner BS. , et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339 (6119): 580-584
  • 71 Steinway SN, Zañudo JGT, Michel PJ, Feith DJ, Loughran TP, Albert R. Combinatorial interventions inhibit TGFβ-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. NPJ Syst Biol Appl 2015; 1 (01) 15014
  • 72 Nieto MA, Huang RYYJ, Jackson RAA, Thiery JP. Emt: 2016. Cell 2016; 166 (01) 21-45
  • 73 Grosse-Wilde A, Fouquier d'Hérouël A, McIntosh E. , et al. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One 2015; 10 (05) e0126522
  • 74 Marmai C, Sutherland RE, Kim KK. , et al. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 301 (01) L71-L78
  • 75 Mazzocca A, Fransvea E, Lavezzari G, Antonaci S, Giannelli G. Inhibition of transforming growth factor β receptor I kinase blocks hepatocellular carcinoma growth through neo-angiogenesis regulation. Hepatology 2009; 50 (04) 1140-1151
  • 76 Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21 (03) 309-322
  • 77 De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13 (02) 97-110
  • 78 Mederacke I, Hsu CC, Troeger JS. , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 79 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
  • 80 Blaner WS, O'Byrne SM, Wongsiriroj N. , et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 2009; 1791 (06) 467-473
  • 81 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
  • 82 Sancho P, Mainez J, Crosas-Molist E. , et al. NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One 2012; 7 (09) e45285
  • 83 Mazzocca A, Antonaci S, Giannelli G. The TGF-β signaling pathway as a pharmacological target in a hepatocellular carcinoma. Curr Pharm Des 2012; 18 (27) 4148-4154
  • 84 Coulouarn C, Clément B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol 2014; 60 (06) 1306-1309
  • 85 Sancho-Bru P, Juez E, Moreno M. , et al. Hepatocarcinoma cells stimulate the growth, migration and expression of pro-angiogenic genes in human hepatic stellate cells. Liver Int 2010; 30 (01) 31-41
  • 86 Sahin H, Trautwein C, Wasmuth HE. Functional role of chemokines in liver disease models. Nat Rev Gastroenterol Hepatol 2010; 7 (12) 682-690
  • 87 Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am J Physiol Cell Physiol 2013; 305 (08) C789-C799
  • 88 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88 (01) 125-172
  • 89 Santamato A, Fransvea E, Dituri F. , et al. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin Sci (Lond) 2011; 121 (04) 159-168
  • 90 Amann T, Bataille F, Spruss T. , et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009; 100 (04) 646-653
  • 91 Yoshiji H, Kuriyama S, Yoshii J. , et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 2003; 52 (09) 1347-1354
  • 92 Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425-456
  • 93 Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008; 47 (04) 1394-1400
  • 94 Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S. Laminin-5 with transforming growth factor-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 2005; 129 (05) 1375-1383
  • 95 Ke AW, Shi GM, Zhou J. , et al. CD151 amplifies signaling by integrin α6β1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology 2011; 140 (05) 1629-41.e15
  • 96 Burridge K, Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp Cell Res 2016; 343 (01) 14-20
  • 97 Pang M, Teng Y, Huang J, Yuan Y, Lin F, Xiong C. Substrate stiffness promotes latent TGF-β1 activation in hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 483 (01) 553-558
  • 98 Azzariti A, Mancarella S, Porcelli L. , et al. Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/α3 integrin axis recovery of focal adhesion kinase ubiquitination. Hepatology 2016; 64 (06) 2103-2117
  • 99 Koudelkova P, Costina V, Weber G. , et al. Transforming growth factor-β drives the transendothelial migration of hepatocellular carcinoma cells. Int J Mol Sci 2017; 18 (10) E2119
  • 100 Reichl P, Dengler M, van Zijl F. , et al. Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Hepatology 2015; 61 (03) 930-941
  • 101 Liu K, Zhang X, Xu W. , et al. Targeting the vasculature in hepatocellular carcinoma treatment: Starving versus normalizing blood supply. Clin Transl Gastroenterol 2017; 8 (06) e98
  • 102 Sistigu A, Di Modugno F, Manic G, Nisticò P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev 2017; 36: 67-77
  • 103 Díaz-López A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res 2014; 6: 205-216
  • 104 Tsai SC, Lin CC, Shih TC. , et al. The miR-200b-ZEB1 circuit regulates diverse stemness of human hepatocellular carcinoma. Mol Carcinog 2017; 56 (09) 2035-2047
  • 105 Wang MD, Wu H, Fu GB. , et al. Acetyl-coenzyme A carboxylase alpha promotion of glucose-mediated fatty acid synthesis enhances survival of hepatocellular carcinoma in mice and patients. Hepatology 2016; 63 (04) 1272-1286
  • 106 Gregory PA, Bert AG, Paterson EL. , et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10 (05) 593-601
  • 107 Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22 (07) 894-907
  • 108 Bracken CP, Gregory PA, Kolesnikoff N. , et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68 (19) 7846-7854
  • 109 Brabletz S, Bajdak K, Meidhof S. , et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 2011; 30 (04) 770-782
  • 110 Kim NH, Kim HS, Li XY. , et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 2011; 195 (03) 417-433
  • 111 Guo C, Zhao D, Zhang Q, Liu S, Sun MZ. miR-429 suppresses tumor migration and invasion by targeting CRKL in hepatocellular carcinoma via inhibiting Raf/MEK/ERK pathway and epithelial-mesenchymal transition. Sci Rep 2018; 8 (01) 2375
  • 112 Xue H, Tian GY. MiR-429 regulates the metastasis and EMT of HCC cells through targeting RAB23. Arch Biochem Biophys 2018; 637 (637) 48-55
  • 113 Wellner U, Schubert J, Burk UC. , et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11 (12) 1487-1495
  • 114 Burk U, Schubert J, Wellner U. , et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008; 9 (06) 582-589
  • 115 Malta TM, Sokolov A, Gentles AJ. , et al; Cancer Genome Atlas Research Network. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 2018; 173 (02) 338-354.e15
  • 116 Fabregat I, Malfettone A, Soukupova J. New insights into the crossroads between EMT and stemness in the context of cancer. J Clin Med 2016; 5 (03) E37
  • 117 Mima K, Okabe H, Ishimoto T. , et al. CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 2012; 72 (13) 3414-3423
  • 118 Fernando J, Malfettone A, Cepeda EB. , et al. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. Int J Cancer 2015; 136 (04) E161-E172
  • 119 Bertran E, Crosas-Molist E, Sancho P. , et al. Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology 2013; 58 (06) 2032-2044
  • 120 Giannelli G, Rani B, Dituri F, Cao Y, Palasciano G. Moving towards personalised therapy in patients with hepatocellular carcinoma: the role of the microenvironment. Gut 2014; 63 (10) 1668-1676
  • 121 Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018; 15 (02) 81-94
  • 122 Bolondi L, Burroughs A, Dufour JF. , et al. Heterogeneity of patients with intermediate (BCLC B) hepatocellular carcinoma: proposal for a subclassification to facilitate treatment decisions. Semin Liver Dis 2012; 32 (04) 348-359
  • 123 Gallaher JA, Enriquez-Navas PM, Luddy KA, Gatenby RA, Anderson ARA. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res 2018; 78 (08) 2127-2139
  • 124 Critelli R, Milosa F, Faillaci F. , et al. Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. Cell Death Dis 2017; 8 (08) e3017-e10
  • 125 Cancer Genome Atlas Research Network. Electronic address: wheeler@bcm.edu; Cancer Genome Atlas Research Network. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017; 169 (07) 1327-1341.e23
  • 126 Koziol JA, Imai H, Dai L, Zhang J-Y, Tan EM. Early detection of hepatocellular carcinoma using autoantibody profiles from a panel of tumor-associated antigens. Cancer Immunol Immunother 2018; 67 (05) 835-841
  • 127 Mathai AM, Kapadia MJ, Alexander J, Kernochan LE, Swanson PE, Yeh MM. Role of Foxp3-positive tumor-infiltrating lymphocytes in the histologic features and clinical outcomes of hepatocellular carcinoma. Am J Surg Pathol 2012; 36 (07) 980-986
  • 128 Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?. Immunity 2009; 30 (05) 626-635
  • 129 Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010; 10 (08) 554-567
  • 130 Alspach E, Lussier DM, Schreiber RD. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol 2018;pii:a028480
  • 131 Fahlén L, Read S, Gorelik L. , et al. T cells that cannot respond to TGF-β escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med 2005; 201 (05) 737-746
  • 132 Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005; 201 (07) 1061-1067
  • 133 Li MO, Sanjabi S, Flavell RA. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006; 25 (03) 455-471
  • 134 Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 2006; 25 (03) 441-454
  • 135 Ishigame H, Zenewicz LA, Sanjabi S. , et al. Excessive Th1 responses due to the absence of TGF-β signaling cause autoimmune diabetes and dysregulated Treg cell homeostasis. Proc Natl Acad Sci U S A 2013; 110 (17) 6961-6966
  • 136 Ansa-Addo EA, Zhang Y, Yang Y. , et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest 2017; 127 (04) 1321-1337
  • 137 Courau T, Nehar-Belaid D, Florez L. , et al. TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight 2016; 1 (09) e85974
  • 138 Zhao Z-G, Cao Z, Xu W. , et al. Immune protection function of multipotent mesenchymal stromal cells: role of transforming growth factor-β1. Cancer Invest 2012; 30 (09) 646-656
  • 139 Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 2010; 184 (10) 5885-5894
  • 140 Chen ML, Pittet MJ, Gorelik L. , et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 2005; 102 (02) 419-424
  • 141 Huang SC, Wei PC, Hwang-Verslues WW. , et al. TGF-β1 secreted by Tregs in lymph nodes promotes breast cancer malignancy via up-regulation of IL-17RB. EMBO Mol Med 2017; 9 (12) 1660-1680
  • 142 Zhang Q, Fu L, Liang Y. , et al. Exosomes originating from MSCs stimulated with TGF-β and IFN-γ promote Treg differentiation. J Cell Physiol 2018; 233 (09) 6832-6840
  • 143 Budhu S, Schaer DA, Li Y. , et al. Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal 2017; 10 (494) eaak9702
  • 144 Kalathil S, Lugade AA, Miller A, Iyer R, Thanavala Y. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res 2013; 73 (08) 2435-2444
  • 145 Tu JF, Ding YH, Ying XH. , et al. Regulatory T cells, especially ICOS+ FOXP3+ regulatory T cells, are increased in the hepatocellular carcinoma microenvironment and predict reduced survival. Sci Rep 2016; 6: 35056
  • 146 Liu D, Li G, Avella DM. , et al. Sunitinib represses regulatory T cells to overcome immunotolerance in a murine model of hepatocellular cancer. OncoImmunology 2017; 7 (01) e1372079
  • 147 Wang D, Yang C, Wang Z. , et al. Norcantharidin combined with Coix seed oil synergistically induces apoptosis and inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation. Sci Rep 2017; 7 (01) 9373
  • 148 Voronov E, Shouval DS, Krelin Y. , et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 2003; 100 (05) 2645-2650
  • 149 Saijo Y, Tanaka M, Miki M. , et al. Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J Immunol 2002; 169 (01) 469-475
  • 150 Liu JY, Li F, Wang LP. , et al. CTL- vs Treg lymphocyte-attracting chemokines, CCL4 and CCL20, are strong reciprocal predictive markers for survival of patients with oesophageal squamous cell carcinoma. Br J Cancer 2015; 113 (05) 747-755
  • 151 Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122 (01) 103-111
  • 152 Liu J, Chen S, Wang W. , et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett 2016; 379 (01) 49-59
  • 153 Katz LH, Likhter M, Jogunoori W. , et al. TGF-β signaling in liver and gastrointestinal cancers. Cancer Lett 2016; 379 (02) 166-172
  • 154 Schlingensiepen KH, Jaschinski F, Lang SA. , et al. Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci 2011; 102 (06) 1193-1200
  • 155 Hau P, Jachimczak P, Bogdahn U. Treatment of malignant gliomas with TGF-β2 antisense oligonucleotides. Expert Rev Anticancer Ther 2009; 9 (11) 1663-1674
  • 156 Oettle H, Seufferlein T, Luger T. , et al. Final results of a phase I/II study in patients with pancreatic cancer, malignant melanoma, and colorectal carcinoma with trabedersen. J Clin Oncol 2012; 30 (15) 4034
  • 157 Tolcher AW, Berlin JD, Cosaert J. , et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer Chemother Pharmacol 2017; 79 (04) 673-680
  • 158 Dituri F, Mazzocca A, Fernando J. , et al. Differential inhibition of the TGF-β signaling pathway in HCC cells using the small molecule inhibitor LY2157299 and the D10 monoclonal antibody against TGF-β receptor type II. PLoS One 2013; 8 (06) e67109
  • 159 Rodon J, Carducci MA, Sepulveda-Sánchez JM. , et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res 2015; 21 (03) 553-560
  • 160 Tovoli F, Lorenzo S, Barbera MA. , et al. Postsorafenib systemic treatments for hepatocellular carcinoma: questions and opportunities after the regorafenib trial. Future Oncol 2017; 13 (21) 1893-1905
  • 161 Agarwal R, Cao Y, Hoffmeier K. , et al. Precision medicine for hepatocelluar carcinoma using molecular pattern diagnostics: results from a preclinical pilot study. Cell Death Dis 2017; 8 (06) e2867
  • 162 Cao Y, Agarwal R, Dituri F. , et al. NGS-based transcriptome profiling reveals biomarkers for companion diagnostics of the TGF-β receptor blocker galunisertib in HCC. Cell Death Dis 2017; 8 (02) e2634-e2639
  • 163 Shinto O, Yashiro M, Kawajiri H. , et al. Inhibitory effect of a TGFbeta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. Br J Cancer 2010; 102 (05) 844-851
  • 164 Halder SK, Beauchamp RD, Datta PK. A specific inhibitor of TGF-β receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 2005; 7 (05) 509-521
  • 165 Jin CH, Krishnaiah M, Sreenu D. , et al. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J Med Chem 2014; 57 (10) 4213-4238
  • 166 Naka K, Ishihara K, Jomen Y. , et al. Novel oral transforming growth factor-β signaling inhibitor EW-7197 eradicates CML-initiating cells. Cancer Sci 2016; 107 (02) 140-148
  • 167 Son JY, Park S-Y, Kim S-J. , et al. EW-7197, a novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Mol Cancer Ther 2014; 13 (07) 1704-1716
  • 168 Yoon JH, Jung SM, Park SH. , et al. Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes. EMBO Mol Med 2013; 5 (11) 1720-1739
  • 169 Katz LH, Li Y, Chen J-S. , et al. Targeting TGF-β signaling in cancer. Expert Opin Ther Targets 2013; 17 (07) 743-760
  • 170 Kitisin K, Ganesan N, Tang Y. , et al. Disruption of transforming growth factor-β signaling through β-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. Oncogene 2007; 26 (50) 7103-7110
  • 171 Baek HJ, Pishvaian MJ, Tang Y. , et al. Transforming growth factor-β adaptor, β2-spectrin, modulates cyclin dependent kinase 4 to reduce development of hepatocellular cancer. Hepatology 2011; 53 (05) 1676-1684
  • 172 Zhang X, Lv H, Zhou Q. , et al. Preclinical pharmacological evaluation of a novel multiple kinase inhibitor, ON123300, in brain tumor models. Mol Cancer Ther 2014; 13 (05) 1105-1116
  • 173 Baker SJ, Reddy EP. CDK4: a key player in the cell cycle, development, and cancer. Genes Cancer 2012; 3 (11–12): 658-669
  • 174 Liu Y, Sethi NS, Hinoue T. , et al; Cancer Genome Atlas Research Network. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 2018; 33 (04) 721-735.e8
  • 175 Shah S, Islam MN, Dakshanamurthy S. , et al. The molecular basis of vitamin D receptor and β-catenin crossregulation. Mol Cell 2006; 21 (06) 799-809
  • 176 Larriba MJ, Valle N, Pálmer HG. , et al. The inhibition of Wnt/beta-catenin signalling by 1alpha,25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocr Relat Cancer 2007; 14 (01) 141-151
  • 177 Walia B, Wang L, Merlin D, Sitaraman SV. TGF-beta down-regulates IL-6 signaling in intestinal epithelial cells: critical role of SMAD-2. FASEB J 2003; 17 (14) 2130-2132
  • 178 Lin L, Amin R, Gallicano GI. , et al. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling. Oncogene 2009; 28 (07) 961-972