Hamostaseologie 2019; 39(02): 173-179
DOI: 10.1055/s-0038-1675357
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Gut Microbiota as an Influencing Factor of Arterial Thrombosis

Christoph Reinhardt
1   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Mainz, Germany
2   German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
› Author Affiliations
Further Information

Publication History

03 July 2018

17 September 2018

Publication Date:
20 November 2018 (online)

Abstract

The mutualistic gut microbiota does not only impact the development and function of various immune cell types, but it also influences the function of the hepatic vascular endothelium and prothrombotic platelet function. With germ-free mouse models, we have demonstrated that gut-derived microbial-associated molecular patterns could stimulate hepatic von Willebrand factor (VWF) synthesis and plasmatic VWF levels through Toll-like receptor-2 (TLR2), thus defining the extent of platelet deposition to the subendothelial matrix of the ligation-injured common carotid artery. In addition to the microbiota-derived choline metabolite trimethylamine N-oxide and the microbiota's regulatory role on the colonic serotonin biosynthesis pathway, affecting prothrombotic platelet function, TLR2-regulated hepatic endothelial VWF synthesis and elevated VWF plasma levels constitute a pivotal mechanism of how the gut microbiota is linked to arterial thrombosis. Conceptually, in addition to the identified functions of the gut microbiota in modulating host nutrition and metabolism, our work places the innate immune functions of the liver sinusoidal endothelium as an actuating variable in arterial thrombus growth.

Zusammenfassung

Die mutualistische Darm-Mikrobiota beeinflusst nicht nur die Entwicklung und Funktion verschiedener Immunzelltypen, sondern auch die hepatische Endothel- und prothrombotische Thrombozytenfunktion. Mit keimfreien Mausmodellen haben wir gezeigt, dass aus dem Darm stammende mikrobiell assoziierte molekulare Muster die Synthese den hepatischen Von-Willebrand-Faktors (VWF) und den plasmatischen VWF durch dem Toll-like-Rezeptor-2 (TLR2) stimulieren und so das Ausmaß der Thrombozytenablagerung an die subendotheliale Matrix der durch Ligatur verletzten Arteria carotis communis bestimmen. Zusätzlich zu dem von der Mikrobiota stammenden Cholin-Metaboliten Trimethylamin-N-Oxid und der regulatorischen Wirkung der Mikrobiota auf den Serotonin-Biosyntheseweg im Kolon, welche die Thrombozytenfunktion beeinflussen, bilden die TLR2-regulierte endotheliale VWF-Synthese in der Leber und erhöhte VWF-Plasmaspiegel eine zentrale Verbindung zwischen Darmmikrobiota und arterieller Thrombose. Neben den identifizierten Einflüssen der Darmmikrobiota auf die Ernährung und den Wirtsmetabolismus legt unsere Arbeit konzeptuell die angeborenen Immunfunktionen den sinusoidalen Leberendothels als Stellgröße des arteriellen Thrombuswachstums fest.

 
  • References

  • 1 Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5 (07) e177
  • 2 Reinhardt C, Reigstad CS, Bäckhed F. Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr 2009; 48 (03) 249-256
  • 3 Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6: 23129
  • 4 Nagpal R, Tsuji H, Takahashi T. , et al. Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by caesarean section. Front Microbiol 2016; 7: 1997
  • 5 Lim ES, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 2018; 6 (01) 87
  • 6 Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr 2009; 98 (02) 229-238
  • 7 Bäckhed F, Roswall J, Peng Y. , et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17 (05) 690-703
  • 8 Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T. , et al. The maternal microbiota drives early postnatal innate immune development. Science 2016; 351 (6279): 1296-1302
  • 9 Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307 (5717): 1915-1920
  • 10 Greer R, Dong X, Morgun A, Shulzhenko N. Investigating a holobiont: microbiota perturbations and transkingdom networks. Gut Microbes 2016; 7 (02) 126-135
  • 11 Salem H, Bauer E, Kirsch R. , et al. Drastic genome reduction in a herbivore's pectinolytic symbiont. Cell 2017; 171 (07) 1520-1531.e13
  • 12 Lécuyer E, Rakotobe S, Lengliné-Garnier H. , et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014; 40 (04) 608-620
  • 13 Balmer ML, Schürch CM, Saito Y. , et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 2014; 193 (10) 5273-5283
  • 14 Bäckhed F, Ding H, Wang T. , et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 101 (44) 15718-15723
  • 15 Caesar R, Reigstad CS, Bäckhed HK. , et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 2012; 61 (12) 1701-1707
  • 16 Heiss CN, Olofsson LE. Gut microbiota-dependent modulation of energy metabolism. J Innate Immun 2018; 10 (03) 163-171
  • 17 Hörmann N, Brandão I, Jäckel S. , et al. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa. PLoS One 2014; 9 (11) e113080
  • 18 Reinhardt C, Bergentall M, Greiner TU. , et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 2012; 483 (7391): 627-631
  • 19 Khandagale A, Kittner JM, Mann A, Ascher S, Kollar B, Reinhardt C. Coagulation factor 9-deficient mice are protected against dextran sulfate sodium-induced colitis. Biol Open 2018; 7 (07) bio034140
  • 20 Penders J, Thijs C, Vink C. , et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118 (02) 511-521
  • 21 Isaac S, Scher JU, Djukovic A. , et al. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother 2017; 72 (01) 128-136
  • 22 Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3 (04) 213-223
  • 23 Westmeier D, Hahlbrock A, Reinhardt C. , et al. Nanomaterial-microbe cross-talk: physicochemical principles and (patho)biological consequences. Chem Soc Rev 2018; 47 (14) 5312-5337
  • 24 Wang Z, Klipfell E, Bennett BJ. , et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472 (7341): 57-63
  • 25 Karbach SH, Schönfelder T, Brandão I. , et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc 2016; 5 (09) e003698
  • 26 Jäckel S, Kiouptsi K, Lillich M. , et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017; 130 (04) 542-553
  • 27 Lindskog Jonsson A, Caesar R, Akrami R. , et al. Impact of gut microbiota and diet on the development of atherosclerosis in ApoE−/− mice. Arterioscler Thromb Vasc Biol 2018; 38: 2318-2326 10.1161/ATVBAHA.118.311233
  • 28 Cani PD, Amar J, Iglesias MA. , et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56 (07) 1761-1772
  • 29 Bielinska K, Radkowski M, Grochowska M. , et al. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutrition 2018; 54: 33-39
  • 30 Amar J, Burcelin R, Ruidavets JB. , et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 2008; 87 (05) 1219-1223
  • 31 Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010; 16 (02) 228-231
  • 32 Balmer ML, Slack E, de Gottardi A. , et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med 2014; 6 (237) 237ra66
  • 33 Carnevale R, Nocella C, Petrozza V. , et al. Localization of lipopolysaccharide from Escherichia Coli into human atherosclerotic plaque. Sci Rep 2018; 8 (01) 3598
  • 34 Tang AT, Choi JP, Kotzin JJ. , et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 2017; 545 (7654): 305-310
  • 35 Ott SJ, El Mokhtari NE, Musfeldt M. , et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 2006; 113 (07) 929-937
  • 36 Karlsson FH, Fåk F, Nookaew I. , et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; 3: 1245
  • 37 Koeth RA, Wang Z, Levison BS. , et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19 (05) 576-585
  • 38 Kelly TN, Bazzano LA, Ajami NJ. , et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants. Circ Res 2016; 119 (08) 956-964
  • 39 Emoto T, Yamashita T, Kobayashi T. , et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels 2017; 32 (01) 39-46
  • 40 Zhu W, Gregory JC, Org E. , et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165 (01) 111-124
  • 41 Arvidsson C, Hallén A, Bäckhed F. Generating and analysing germ-free mice. Curr Protoc Mouse Biol 2012; 2 (04) 307-316
  • 42 Massberg S, Gawaz M, Grüner S. , et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197 (01) 41-49
  • 43 Busch CJ, Hendrikx T, Weismann D. , et al. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice. Hepatology 2017; 65 (04) 1181-1195
  • 44 Odenwald MA, Turner JR. The intestinal epithelial barrier: a therapeutic target?. Nat Rev Gastroenterol Hepatol 2017; 14 (01) 9-21
  • 45 Spadoni I, Zagato E, Bertocchi A. , et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015; 350 (6262): 830-834
  • 46 Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 2002; 296 (5574): 1880-1882
  • 47 Binion DG, West GA, Ina K, Ziats NP, Emancipator SN, Fiocchi C. Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 1997; 112 (06) 1895-1907
  • 48 Hauser IA, Johnson DR, Madri JA. Differential induction of VCAM-1 on human iliac venous and arterial endothelial cells and its role in adhesion. J Immunol 1993; 151 (10) 5172-5185
  • 49 Ogawa H, Rafiee P, Heidemann J. , et al. Mechanisms of endotoxin tolerance in human intestinal microvascular endothelial cells. J Immunol 2003; 170 (12) 5956-5964
  • 50 Kossmann S, Lagrange J, Jäckel S. , et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 2017; 9 (375)
  • 51 Carnevale R, Raparelli V, Nocella C. , et al. Gut-derived endotoxin stimulates factor VIII secretion from endothelial cells. Implications for hypercoagulability in cirrhosis. J Hepatol 2017; 67 (05) 950-956
  • 52 Into T, Kanno Y, Dohkan J. , et al. Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells. J Biol Chem 2007; 282 (11) 8134-8141
  • 53 Yee A, Gildersleeve RD, Gu S. , et al. A von Willebrand factor fragment containing the D'D3 domains is sufficient to stabilize coagulation factor VIII in mice. Blood 2014; 124 (03) 445-452
  • 54 Lollar P, Hill-Eubanks DC, Parker CG. Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 1988; 263 (21) 10451-10455
  • 55 Denis CV, André P, Saffaripour S, Wagner DD. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proc Natl Acad Sci U S A 2001; 98 (07) 4072-4077
  • 56 Fahs SA, Hille MT, Shi Q, Weiler H, Montgomery RR. A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood 2014; 123 (24) 3706-3713
  • 57 Cogger VC, Mohamad M, Solon-Biet SM. , et al. Dietary macronutrients and the aging liver sinusoidal endothelial cell. Am J Physiol Heart Circ Physiol 2016; 310 (09) H1064-H1070
  • 58 Seternes T, Sørensen K, Smedsrød B. Scavenger endothelial cells of vertebrates: a nonperipheral leukocyte system for high-capacity elimination of waste macromolecules. Proc Natl Acad Sci U S A 2002; 99 (11) 7594-7597
  • 59 Schroedl W, Kleessen B, Jaekel L, Shehata AA, Krueger M. Influence of the gut microbiota on blood acute-phase proteins. Scand J Immunol 2014; 79 (05) 299-304
  • 60 Subramaniam S, Jurk K, Hobohm L. , et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 2017; 129 (16) 2291-2302
  • 61 Kelly D, Tuddenham EG, Summerfield JA. The effect of an acute phase reaction and BCG inoculation on factor VIII in the guinea-pig. Thromb Res 1985; 40 (04) 445-451
  • 62 Kiouptsi K, Grill A, Mann A. , et al. Mice deficient in the anti-haemophilic coagulation factor VIII show increased von Willebrand factor plasma levels. PLoS One 2017; 12 (08) e0183590
  • 63 Alflen A, Prüfer S, Ebner K. , et al. ADAMTS-13 regulates neutrophil recruitment in a mouse model of invasive pulmonary aspergillosis. Sci Rep 2017; 7 (01) 7184
  • 64 Pappelbaum KI, Gorzelanny C, Grässle S. , et al. Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 2013; 128 (01) 50-59
  • 65 Denis C, Methia N, Frenette PS. , et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A 1998; 95 (16) 9524-9529
  • 66 Waaler BA, Gustafsson BE, Hauge A, Nilsson D, Amundsen E. Plasma levels of various blood clotting factors in germfree rats. Proc Soc Exp Biol Med 1964; 117: 444-446
  • 67 Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371 (9615): 838-851
  • 68 Teltschik Z, Wiest R, Beisner J. , et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology 2012; 55 (04) 1154-1163
  • 69 Ferro D, Quintarelli C, Lattuada A. , et al. High plasma levels of von Willebrand factor as a marker of endothelial perturbation in cirrhosis: relationship to endotoxemia. Hepatology 1996; 23 (06) 1377-1383
  • 70 Lisman T, Bongers TN, Adelmeijer J. , et al. Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology 2006; 44 (01) 53-61
  • 71 Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005; 115 (11) 3149-3156
  • 72 Mullick AE, Soldau K, Kiosses WB, Bell III TA, Tobias PS, Curtiss LK. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med 2008; 205 (02) 373-383
  • 73 Yano JM, Yu K, Donaldson GP. , et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161 (02) 264-276
  • 74 Walther DJ, Peter JU, Winter S. , et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 2003; 115 (07) 851-862
  • 75 Duerschmied D, Canault M, Lievens D. , et al. Serotonin stimulates platelet receptor shedding by tumor necrosis factor-alpha-converting enzyme (ADAM17). J Thromb Haemost 2009; 7 (07) 1163-1171
  • 76 Duerschmied D, Suidan GL, Demers M. , et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013; 121 (06) 1008-1015
  • 77 Schnupf P, Gaboriau-Routhiau V, Gros M. , et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 2015; 520 (7545): 99-103
  • 78 Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010; 107 (27) 12204-12209
  • 79 Dewhirst FE, Chien CC, Paster BJ. , et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol 1999; 65 (08) 3287-3292
  • 80 Zhu W, Wang Z, Tang WHW, Hazen SL. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 2017; 135 (17) 1671-1673
  • 81 Li T, Chen Y, Gua C, Li X. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Front Physiol 2017; 8: 350
  • 82 Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-oxide instigates NLRP3 inflammasome activation and endothelial dysfunction. Cell Physiol Biochem 2017; 44 (01) 152-162
  • 83 Roberts AB, Gu X, Buffa JA. , et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 2018; 24 (09) 1407-1417
  • 84 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45