CC BY 4.0 · TH Open 2018; 02(03): e272-e279
DOI: 10.1055/s-0038-1670630
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Functional Genomics for the Identification of Modulators of Platelet-Dependent Thrombus Formation

Elien Vermeersch
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
,
Benedicte P. Nuyttens
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
,
Claudia Tersteeg
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
,
Katleen Broos
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
,
Simon F. De Meyer
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
,
Karen Vanhoorelbeke
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
,
Hans Deckmyn
1   Laboratory for Thrombosis Research, KU Leuven Campus Kulak, Kortrijk, Belgium
› Author Affiliations
Further Information

Publication History

11 April 2018

06 August 2018

Publication Date:
10 September 2018 (online)

Abstract

Despite the absence of the genome in platelets, transcription profiling provides important insights into platelet function and can help clarify abnormalities in platelet disorders. The Bloodomics Consortium performed whole-genome expression analysis comparing in vitro–differentiated megakaryocytes (MKs) with in vitro–differentiated erythroblasts and different blood cell types. This allowed the identification of genes with upregulated expression in MKs compared with all other cell lineages, among the receptors BAMBI, LRRC32, ESAM, and DCBLD2. In a later correlative analysis of genome-wide platelet RNA expression with interindividual human platelet reactivity, LLRFIP and COMMD7 were additionally identified. A functional genomics approach using morpholino-based silencing in zebrafish identified various roles for all of these selected genes in thrombus formation. In this review, we summarize the role of the six identified genes in zebrafish and discuss how they correlate with subsequently performed mouse experiments.

 
  • References

  • 1 Weyrich AS, Kraiss LW, Zimmerman GA. Trading places: mRNA transfer between cells. Blood 2007; 110 (07) 2219
  • 2 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9 (06) 654-659
  • 3 Watkins NA, Gusnanto A, de Bono B. , et al; Bloodomics Consortium. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 2009; 113 (19) e1-e9
  • 4 O'Connor MN, Salles II, Cvejic A. , et al; Bloodomics Consortium. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins. Blood 2009; 113 (19) 4754-4762
  • 5 Onichtchouk D, Chen YG, Dosch R. , et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 1999; 401 (6752): 480-485
  • 6 Xavier S, Gilbert V, Rastaldi MP. , et al. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS One 2010; 5 (09) e12995
  • 7 Guillot N, Kollins D, Gilbert V. , et al. BAMBI regulates angiogenesis and endothelial homeostasis through modulation of alternative TGFβ signaling. PLoS One 2012; 7 (06) e39406
  • 8 Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2009; 106 (32) 13445-13450
  • 9 Stockis J, Colau D, Coulie PG, Lucas S. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol 2009; 39 (12) 3315-3322
  • 10 Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA. Platelet genomics and proteomics in human health and disease. J Clin Invest 2005; 115 (12) 3370-3377
  • 11 Hirata Ki, Ishida T, Penta K. , et al. Cloning of an immunoglobulin family adhesion molecule selectively expressed by endothelial cells. J Biol Chem 2001; 276 (19) 16223-16231
  • 12 Nasdala I, Wolburg-Buchholz K, Wolburg H. , et al. A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 2002; 277 (18) 16294-16303
  • 13 Pfeiffer F, Kumar V, Butz S. , et al. Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur J Immunol 2008; 38 (08) 2142-2155
  • 14 Malergue F, Galland F, Martin F, Mansuelle P, Aurrand-Lions M, Naquet P. A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol Immunol 1998; 35 (17) 1111-1119
  • 15 Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet α-granules using mass spectrometry. J Thromb Haemost 2007; 5 (09) 1945-1955
  • 16 Kobuke K, Furukawa Y, Sugai M. , et al. ESDN, a novel neuropilin-like membrane protein cloned from vascular cells with the longest secretory signal sequence among eukaryotes, is up-regulated after vascular injury. J Biol Chem 2001; 276 (36) 34105-34114
  • 17 Nie L, Guo X, Esmailzadeh L. , et al. Transmembrane protein ESDN promotes endothelial VEGF signaling and regulates angiogenesis. J Clin Invest 2013; 123 (12) 5082-5097
  • 18 Burkhart JM, Vaudel M, Gambaryan S. , et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120 (15) e73-e82
  • 19 Goodall AH, Burns P, Salles I. , et al; Bloodomics Consortium. Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function. Blood 2010; 116 (22) 4646-4656
  • 20 Burstein E, Hoberg JE, Wilkinson AS. , et al. COMMD proteins, a novel family of structural and functional homologs of MURR1. J Biol Chem 2005; 280 (23) 22222-22232
  • 21 Spinelli SL, Casey AE, Pollock SJ. , et al. Platelets and megakaryocytes contain functional nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 2010; 30 (03) 591-598
  • 22 Khachigian LM, Santiago FS, Rafty LA. , et al. GC factor 2 represses platelet-derived growth factor A-chain gene transcription and is itself induced by arterial injury. Circ Res 1999; 84 (11) 1258-1267
  • 23 Suriano AR, Sanford AN, Kim N. , et al. GCF2/LRRFIP1 represses tumor necrosis factor alpha expression. Mol Cell Biol 2005; 25 (20) 9073-9081
  • 24 Yang P, An H, Liu X. , et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin-dependent pathway. Nat Immunol 2010; 11 (06) 487-494
  • 25 Rowley JW, Oler AJ, Tolley ND. , et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011; 118 (14) e101-e111
  • 26 Lang MR, Gihr G, Gawaz MP, Müller II. Hemostasis in Danio rerio: is the zebrafish a useful model for platelet research?. J Thromb Haemost 2010; 8 (06) 1159-1169
  • 27 Jagadeeswaran P. Zebrafish: a tool to study hemostasis and thrombosis. Curr Opin Hematol 2005; 12 (02) 149-152
  • 28 Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D. Identification and characterization of zebrafish thrombocytes. Br J Haematol 1999; 107 (04) 731-738
  • 29 Grosser T, Yusuff S, Cheskis E, Pack MA, FitzGerald GA. Developmental expression of functional cyclooxygenases in zebrafish. Proc Natl Acad Sci U S A 2002; 99 (12) 8418-8423
  • 30 Kim S, Carrillo M, Kulkarni V, Jagadeeswaran P. Evolution of primary hemostasis in early vertebrates. PLoS One 2009; 4 (12) e8403
  • 31 Hughes CE, Radhakrishnan UP, Lordkipanidzé M. , et al. G6f-like is an ITAM-containing collagen receptor in thrombocytes. PLoS One 2012; 7 (12) e52622
  • 32 Carrillo M, Kim S, Rajpurohit SK, Kulkarni V, Jagadeeswaran P. Zebrafish von Willebrand factor. Blood Cells Mol Dis 2010; 45 (04) 326-333
  • 33 Denis C, Methia N, Frenette PS. , et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A 1998; 95 (16) 9524-9529
  • 34 Leebeek FW, Eikenboom JC. Von Willebrand's disease. N Engl J Med 2016; 375 (21) 2067-2080
  • 35 Williams CM, Poole AW. Using zebrafish (Danio rerio) to assess gene function in thrombus formation. In: Gibbins J, Mahaut-Smith M. , eds. Platelets and Megakaryocytes. Methods in Molecular Biology (Methods and Protocols). Vol. 788. New York, NY: Springer; 2012
  • 36 Williams CM, Feng Y, Martin P, Poole AW. Protein kinase C alpha and beta are positive regulators of thrombus formation in vivo in a zebrafish (Danio rerio) model of thrombosis. J Thromb Haemost 2011; 9 (12) 2457-2465
  • 37 Tournoij E, Weber GJ, Akkerman JW. , et al. Mlck1a is expressed in zebrafish thrombocytes and is an essential component of thrombus formation. J Thromb Haemost 2010; 8 (03) 588-595
  • 38 Howe K, Clark MD, Torroja CF. , et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496 (7446): 498-503
  • 39 Kahn ML, Zheng Y-W, Huang W. , et al. A dual thrombin receptor system for platelet activation. Nature 1998; 394 (6694): 690-694
  • 40 McKenzie SE, Taylor SM, Malladi P. , et al. The role of the human Fc receptor Fc γ RIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol 1999; 162 (07) 4311-4318
  • 41 Furie B, Furie BC. Thrombus formation in vivo. J Clin Invest 2005; 115 (12) 3355-3362
  • 42 Eckly A, Hechler B, Freund M. , et al. Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost 2011; 9 (04) 779-789
  • 43 Barr JD, Chauhan AK, Schaeffer GV, Hansen JK, Motto DG. Red blood cells mediate the onset of thrombosis in the ferric chloride murine model. Blood 2013; 121 (18) 3733-3741
  • 44 Salles-Crawley II, Monkman JH, Ahnström J, Lane DA, Crawley JT. Vessel wall BAMBI contributes to hemostasis and thrombus stability. Blood 2014; 123 (18) 2873-2881
  • 45 Vermeersch E, Denorme F, Maes W. , et al. The role of platelet and endothelial GARP in thrombosis and hemostasis. PLoS One 2017; 12 (03) e0173329
  • 46 Rachidi S, Metelli A, Riesenberg B. , et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol 2017; 2 (11) eaai7911
  • 47 Roubin R, Pizette S, Ollendorff V, Planche J, Birnbaum D, Delapeyriere O. Structure and developmental expression of mouse Garp, a gene encoding a new leucine-rich repeat-containing protein. Int J Dev Biol 1996; 40 (03) 545-555
  • 48 Carambia A, Freund B, Schwinge D. , et al. TGF-β-dependent induction of CD4(+)CD25(+)Foxp3(+) Tregs by liver sinusoidal endothelial cells. J Hepatol 2014; 61 (03) 594-599
  • 49 Stalker TJ, Wu J, Morgans A. , et al. Endothelial cell specific adhesion molecule (ESAM) localizes to platelet-platelet contacts and regulates thrombus formation in vivo. J Thromb Haemost 2009; 7 (11) 1886-1896
  • 50 Brass LF, Zhu L, Stalker TJ. Novel therapeutic targets at the platelet vascular interface. Arterioscler Thromb Vasc Biol 2008; 28 (03) s43-s50
  • 51 Rohatgi A, Owens AW, Khera A. , et al. Differential associations between soluble cellular adhesion molecules and atherosclerosis in the Dallas Heart Study: a distinct role for soluble endothelial cell-selective adhesion molecule. Arterioscler Thromb Vasc Biol 2009; 29 (10) 1684-1690
  • 52 Inoue M, Ishida T, Yasuda T. , et al. Endothelial cell-selective adhesion molecule modulates etherosclerosis through plaque angiogenesis and monocyte-endothelial interaction. Microvasc Res 2010; 80 (02) 179-187
  • 53 Wegmann F, Petri B, Khandoga AG. , et al. ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J Exp Med 2006; 203 (07) 1671-1677
  • 54 Yin X, Wu S, Wang Z, Wang Y, Du Q, Wang A. Anti-thrombosis effect of LRRFIP1 shRNA lentivirus in a mouse model of deep vein thrombosis. Thromb Res 2013; 132 (01) 127-131
  • 55 Macaulay IC, Thon JN, Tijssen MR. , et al. Canonical Wnt signaling in megakaryocytes regulates proplatelet formation. Blood 2013; 121 (01) 188-196
  • 56 Salehe BR, Jones CI, Di Fatta G, McGuffin LJ. RAPIDSNPs: A new computational pipeline for rapidly identifying key genetic variants reveals previously unidentified SNPs that are significantly associated with individual platelet responses. PLoS One 2017; 12 (04) e0175957
  • 57 Galarneau G, Coady S, Garrett ME. , et al. Gene-centric association study of acute chest syndrome and painful crisis in sickle cell disease patients. Blood 2013; 122 (03) 434-442
  • 58 Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15 (07) 1262-1272
  • 59 Bottega R, Marconi C, Faleschini M. , et al. ACTN1-related thrombocytopenia: identification of novel families for phenotypic characterization. Blood 2015; 125 (05) 869-872
  • 60 Fletcher SJ, Johnson B, Lowe GC. , et al; UK Genotyping and Phenotyping of Platelets study group. SLFN14 mutations underlie thrombocytopenia with excessive bleeding and platelet secretion defects. J Clin Invest 2015; 125 (09) 3600-3605
  • 61 Stockley J, Morgan NV, Bem D. , et al; UK Genotyping and Phenotyping of Platelets Study Group. Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects. Blood 2013; 122 (25) 4090-4093
  • 62 Westbury SK, Canault M, Greene D. , et al; NIHR BioResource–Rare Diseases Consortium. Expanded repertoire of RASGRP2 variants responsible for platelet dysfunction and severe bleeding. Blood 2017; 130 (08) 1026-1030