Journal of Pediatric Neurology 2019; 17(05): 161-167
DOI: 10.1055/s-0038-1667177
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Developmental Alterations of Cerebral Gray and White Matter in Children with Congenital Cyanotic Heart Disease

Juan Leon-Wyss
1   Cardio-vascular Center, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
,
Cynthia Rosario
1   Cardio-vascular Center, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
,
Janet Toribio
1   Cardio-vascular Center, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
,
Herwin Speckter
2   Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
,
Bernd Foerster
2   Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
,
Jairo Oviedo
2   Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
,
Hans-Jürgen Huppertz
3   Swiss Epilepsy Clinic, Klinik Lengg AG, Zurich, Switzerland
,
Peter Stoeter
2   Department of Radiology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
› Author Affiliations
Further Information

Publication History

28 March 2018

07 June 2018

Publication Date:
15 August 2018 (online)

Abstract

This article examines the relation between oxygen saturation and T2 star time in cyanotic congenital heart disease and its correlation to cerebral gray and white matter alterations. Magnetic resonance imaging was performed in 25 patients (mean age: 52.2 months) and 32 controls. Gray and white matter volumes, as well as fractional anisotropy and longitudinal diffusivity, were significantly reduced in patients. The reduction longitudinal diffusivity correlated to oxygen saturation and T2 star time of gray matter (p < 0.05). This diffusion tensor imaging (DTI) parameter was most affected in cyanotic congenital heart disease and because is the only parameter showing significant correlation to reduced oxygenation, it should be included more often in the follow-up of these patients over time.

 
  • References

  • 1 du Plessis AJ. Neurologic complications of cardiac disease in the newborn. Clin Perinatol 1997; 24 (04) 807-826
  • 2 Miller SP, McQuillen PS, Hamrick S. , et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med 2007; 357 (19) 1928-1938
  • 3 Mebius MJ, Kooi EMW, Bilardo CM, Bos AF. Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review. Pediatrics 2017 140. (01): Doi: 10.1542/peds.2016-4055
  • 4 Marino BS, Lipkin PH, Newburger JW. , et al; American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126 (09) 1143-1172
  • 5 Claessens NHP, Kelly CJ, Counsell SJ, Benders MJNL. Neuroimaging, cardiovascular physiology, and functional outcomes in infants with congenital heart disease. Dev Med Child Neurol 2017; 59 (09) 894-902
  • 6 Marelli A, Miller SP, Marino BS, Jefferson AL, Newburger JW. Brain in congenital heart disease across the lifespan: the cumulative burden of injury. Circulation 2016; 133 (20) 1951-1962
  • 7 Rollins CK, Asaro LA, Akhondi-Asl A. , et al. White matter volume predicts language development in congenital heart disease. J Pediatr 2017; 181: 42-48.e2
  • 8 Back SA. Brain injury in the preterm infant: new horizons for pathogenesis and prevention. Pediatr Neurol 2015; 53 (03) 185-192
  • 9 Leon-Wyss J, Foerster B, Rosario C. , et al. Influence of oxygen saturation and age on relaxation time of grey and white matter and diffusion tensor imaging parameters in children with cardiac malformations. J Pediatr Neuroradiol 2016; 5: 248-252
  • 10 Lauridsen MH, Uldbjerg N, Henriksen TB. , et al. Cerebral oxygenation measurements by magnetic resonance imaging in fetuses with and without heart defects. Circ Cardiovasc Imaging 2017; 10 (11) e006459 . doi: 10.1161/CIRCIMAGING.117.006459
  • 11 Van Dijk EJ, Prins ND, Vermeer SE, Koudstaal PJ, Breteler MMB. Frequency of white matter lesions and silent lacunar infarcts. In: Jellinger KA, Schmidt R, Windisch M. , eds. Aging and Dementia. Current and Future Concepts. Wien (Austria) and New York: Springer; 2002: 27
  • 12 Jenkins KJ. Risk adjustment for congenital heart surgery: the RACHS-1 method. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2004; 7: 180-184
  • 13 Huppertz HJ, Kröll-Seger J, Klöppel S, Ganz RE, Kassubek J. Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage 2010; 49 (03) 2216-2224
  • 14 Shattuck DW, Mirza M, Adisetiyo V. , et al. Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 2008; 39 (03) 1064-1080
  • 15 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57: 289-300
  • 16 Schellen C, Ernst S, Gruber GM. , et al. Fetal MRI detects early alterations of brain development in Tetralogy of Fallot. Am J Obstet Gynecol 2015; 213 (03) 392.e1-392.e7
  • 17 von Rhein M, Buchmann A, Hagmann C. , et al. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain 2014; 137 (Pt 1): 268-276
  • 18 Cordina R, Grieve S, Barnett M, Lagopoulos J, Malitz N, Celermajer DS. Brain volumetric, regional cortical thickness and radiographic findings in adults with cyanotic congenital heart disease. Neuroimage Clin 2014; 4: 319-325
  • 19 Deng YY, Lu J, Ling EA, Kaur C. Role of microglia in the process of inflammation in the hypoxic developing brain. Front Biosci (Schol Ed) 2011; 3: 884-900
  • 20 Panigrahy A, Schmithorst VJ, Wisnowski JL. , et al. Relationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries. Neuroimage Clin 2015; 7: 438-448
  • 21 Krogsrud SK, Fjell AM, Tamnes CK. , et al. Changes in white matter microstructure in the developing brain--a longitudinal diffusion tensor imaging study of children from 4 to 11years of age. Neuroimage 2016; 124 (Pt A): 473-486
  • 22 Takahashi M, Ono J, Harada K, Maeda M, Hackney DB. Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology 2000; 216 (03) 881-885
  • 23 Leong D, Calabrese E, White LE. , et al. Correlation of diffusion tensor imaging parameters in the canine brain. Neuroradiol J 2015; 28 (01) 12-18
  • 24 Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 2011; 31 (30) 10937-10947
  • 25 Rivkin MJ, Watson CG, Scoppettuolo LA. , et al. Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg 2013; 146 (03) 543-9.e1
  • 26 Licht DJ, Shera DM, Clancy RR. , et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 2009; 137 (03) 529-536 , discussion 536–537