RSS-Feed abonnieren
DOI: 10.1055/s-0038-1667079
Advancing the State of the Art in Clinical Natural Language Processing through Shared Tasks
Publikationsverlauf
Publikationsdatum:
29. August 2018 (online)
Summary
Objectives: To review the latest scientific challenges organized in clinical Natural Language Processing (NLP) by highlighting the tasks, the most effective methodologies used, the data, and the sharing strategies.
Methods: We harvested the literature by using Google Scholar and PubMed Central to retrieve all shared tasks organized since 2015 on clinical NLP problems on English data.
Results: We surveyed 17 shared tasks. We grouped the data into four types (synthetic, drug labels, social data, and clinical data) which are correlated with size and sensitivity. We found named entity recognition and classification to be the most common tasks. Most of the methods used to tackle the shared tasks have been data-driven. There is homogeneity in the methods used to tackle the named entity recognition tasks, while more diverse solutions are investigated for relation extraction, multi-class classification, and information retrieval problems.
Conclusions: There is a clear trend in using data-driven methods to tackle problems in clinical NLP. The availability of more and varied data from different institutions will undoubtedly lead to bigger advances in the field, for the benefit of healthcare as a whole.
-
References
- 1 Ohno-Machado L. Realizing the full potential of electronic health records: the role of natural language processing. J Am Med Inform Assoc 2011; Sep 1; 18 (05) 539
- 2 Chapman WW, Nadkarni PM, Hirschman L, D’Avolio LW, Savova GK, Uzuner Ö. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. J Am Med Inform Assoc 2011; Sep; 18 (05) 540-3
- 3 Nissim M, Abzianidze L, Evang K, van der Goot R, Haagsma H, Plank B. , et al. Last Words: Sharing is Caring: The Future of Shared Tasks. Computational Linguistics 2017; 43 (04) 897-904
- 4 Lluch M. Healthcare professionals’ organizational barriers to health information technologies — A literature review. Int J Med Inform 2011; Dec 31; 80 (12) 849-62
- 5 Dwyer 3rd SJ, Weaver AC, Hughes KK. Health insurance portability and accountability act. Security Issues in the Digital Medical Enterprise 2004; Apr; 72 (02) 9-18
- 6 Styler 4th WF, Bethard S, Finan S, Palmer M, Pradhan S, de Groen PC. , et al. Temporal annotation in the clinical domain. Trans Assoc Comput Linguist 2014; Apr 30; 2: 143-154 ( http://aclweb.org/anthology/Q/Q14/Q14-1012.pdf )
- 7 Velupillai S, Mowery D, South BR, Kvist M, Dalianis H. Recent advances in clinical natural language processing in support of semantic analysis. Yearb Med Inform 2015; 10 (01) 183-93
- 8 Huang CC, Lu Z. Community challenges in Biomedical Text Mining over 10 years: success, failure and the future. Brief Bioinform 2015; May 1; 17 (01) 132-44
- 9 Roberts K, Simpson MS, Voorhees EM, Hersh WR. Overview of the TREC 2015 Clinical Decision Support Track. In: Proceedings of the 2015 Text Retrieval Conference
- 10 Song Y, He Y, Hu Q, He L. Ecnu at 2015 CDS track: Two re-ranking methods in medical information retrieval. In: Proceedings of the 2015 Text Retrieval Conference 2015
- 11 Roberts K, Demner-Fushman D, Voorhees EM, Hersh WR, Bedrick S, Lazar AJ. Overview of the TREC 2017 precision medicine track. TREC, Gaithersburg, MD; 2017
- 12 Kelly L, Goeuriot L, Suominen H, Névéol A, Palotti J, Zuccon G. Overview of the CLEF eHealth evaluation lab 2016. In International Conference of the Cross-Language Evaluation Forum for European Languages 2016 Sep 5. Springer International Publishing; 2016. . p. 255–66
- 13 Goeuriot L, Kelly L, Suominen H, Hanlen L, Névéol A, Grouin C. , et al. Overview of the CLEF eHealth evaluation lab 2015. In: International Conference of the Cross-Language Evaluation Forum for European Languages 2015 Sep 8. Cham: Springer; 2015. . p. 429–43
- 14 Goeuriot L, Kelly L, Suominen H, Névéol A, Robert A, Kanoulas E. , et al. CLEF 2017 eHealth evaluation lab overview. In: International Conference of the Cross-Language Evaluation Forum for European Languages 2017 Sep 11. Cham: Springer; 2017. p. 291–303
- 15 Suominen H, Zhou L, Hanlen L, Ferraro G. Benchmarking clinical speech recognition and information extraction: new data, methods, and evaluations. JMIR Med Inform 2015; Apr; 3 (02) e19
- 16 Suominen H, Zhou L, Goeuriot L, Kelly L. Task 1 of the CLEF eHealth Evaluation Lab 2016: Handover Information Extraction. In CLEF (Working Notes) 2016 Sep. p. 1–14
- 17 Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res 2004; Jan 1; 32 (Database issue): D267-70
- 18 Ebersbach M, Herms R, Lohr C, Eibl M. Wrappers for Feature Subset Selection in CRF-based Clinical Information Extraction. In CLEF (Working Notes) 2016; p. 69–80
- 19 Roberts K, Demner-Fushman D, Tonning JM. Overview of the TAC 2017 Adverse Reaction Extraction from Drug Labels Track. Proceedings of the Text Analysis Conference; 2017
- 20 Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf 1999; Feb 1; 20 (02) 109-17
- 21 Gross R, Acquisti A. Information revelation and privacy in online social networks. In: Proceedings of the 2005 ACM workshop on Privacy in the electronic society 2005 Nov 7. ACM; 2005. p 71–80)
- 22 Zimmer M. “But the data is already public”: on the ethics of research in Facebook. Ethics Inf Technol 2010; Dec 1; 12 (04) 313-25
- 23 Coppersmith G, Dredze M, Harman C, Hollingshead K, Mitchell M. CLPsych 2015 Shared Task: Depression and PTSD on Twitter. In: CLPsych@ HLT-NAACL 2015 Jun 5. p. 31–9. ( http://www.aclweb.org/anthology/W15-1204 )
- 24 Resnik P, Armstrong W, Claudino L, Nguyen T. The University of Maryland CLPsych 2015 shared task system. In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality 2015. p. 54–60. ( http://www.aclweb.org/anthology/W15-1207 )
- 25 Sarker A, Nikfarjam A, Gonzalez G. Social Media Mining shared task workshop. In: Biocomputing 2016: Proceedings of the Pacific Symposium 2016. p. 581–92
- 26 Sarker A, Ginn R, Nikfarjam A, O’Connor K, Smith K, Jayaraman S. , et al. Utilizing social media data for pharmacovigilance: A review. J Biomed Inform 2015; Apr 30; 54: 202-12
- 27 Rastegar-Mojarad MA, Elayavilli RK, Yu Y, Liu H. Detecting signals in noisy data-can ensemble classifiers help identify adverse drug reaction in tweets. In: Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing 2016
- 28 Wang CK, Singh ON, Dai HJ, Jonnagaddala JI, Jue TR, Iqbal US. , et al. NTTMUNSW system for adverse drug reactions extraction in Twitter data. In Proceedings of the Social Media Mining Shared Task Workshop at the Pacific Symposium on Biocomputing, Big Island, HI, USA 2016 Jan. p. 4–8
- 29 Sarker A, Gonzalez-Hernandez G. Overview of the Second Social Media Mining for Health (SMM4H) Shared Tasks at AMIA 2017. In: Proceedings of the 2nd Social Media Mining for Health Research and Applications Workshop;1(10,822):1239
- 30 Kiritchenko S, Mohammad SM, Jason Morin JC, de Bruijn B. NRC-Canada at SMM4H Shared Task: Classifying Tweets Mentioning Adverse Drug Reactions and Medication Intake. In: Proceedings of the Second Workshop on Social Media Mining for Health Applications (SMM4H). Health Language Processing Laboratory; 2017
- 31 Friedrichs J, Mahata D, Gupta S. InfyNLP at SMM4H Task 2: Stacked Ensemble of Shallow Convolutional Neural Networks for Identifying Personal Medication Intake from Twitter. In: Proceedings of the Second Workshop on Social Media Mining for Health Applications (SMM4H). Health Language Processing Laboratory; 2017
- 32 Belousov M, Dixon W, Nenadic G. Using an Ensemble of Generalised Linear and Deep Learning Models in the SMM4H 2017 Medical Concept Normalisation Task. In: Proceedings of the Second Workshop on Social Media Mining for Health Applications (SMM4H). Health Language Processing Laboratory; 2017
- 33 Milne DN, Pink G, Hachey B, Calvo RA. CLPsych 2016 Shared Task: Triaging content in online peer-support forums. In CL Psych@ HLT-NAACL 2016. p. 118–27. ( http://www.aclweb.org/anthology/W16-0312 )
- 34 Mac Kim S, Wang Y, Wan S, Paris C. Data61- CSIRO systems at the CLPsych 2016 Shared Task. In CLPsych@ HLT-NAACL 2016. p. 128–32. ( http://www.aclweb.org/anthology/W16-0313 )
- 35 Hollingshead K, Ireland ME, Loveys K. Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology–From Linguistic Signal to Clinical Reality; 2017
- 36 Wakamiya S, Morita M, Kano Y, Ohkuma T, Aramaki E. Overview of the NTCIR-13: Medweb task. In Proceedings of the NTCIR-13 Conference; 2017
- 37 Iso H, Ruiz C, Murayama T, Taguchi K, Takeuchi R, Yamamoto H. , et al. NTCIR-13 MedWeb Task: Multi-label Classification of Tweets using an Ensemble of Neural Networks. In Proceedings of the NTCIR-13 Conference 2017
- 38 Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G. , et al. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med 2011; May; 39 (05) 952
- 39 Elhadad N, Pradhan S, Gorman SL, Manandhar S, Chapman WW, Savova GK. SemEval-2015 Task 14: Analysis of Clinical Text. In SemEval@ NAACL-HLT 2015 Jun 4 (pp. 303-310). ( http://aclweb.org/anthology/S/S15/S15-2051.pdf )
- 40 Mowery DL, Velupillai S, South BR, Christensen L, Martinez D, Kelly L. , et al. Task 2: ShARe/CLEF eHealth evaluation lab 2014. In: Proceedings of CLEF: 2014
- 41 Pathak P, Patel P, Panchal V, Soni S, Dani K, Patel A, Choudhary N. ezDI: A Supervised NLP System for Clinical Narrative Analysis. In: SemEval@ NAACL-HLT 2015 Jun 4. p. 412–6. ( http://aclweb.org/anthology/S/S15/S15-2071.pdf )
- 42 Xu J, Zhang Y, Wang J, Wu Y, Jiang M, Soysal E. , et al. UTH-CCB: The Participation of the SemEval 2015 Challenge-Task 14. In: SemEval@NAACL- HLT 2015 Jun 4. p. 311-4. ( http://aclweb.org/anthology/S/S15/S15-2052.pdf )
- 43 Roberts K, Demner-Fushman D, Voorhees E, Hersh W. Overview of the TREC 2016 Clinical Decision Support Track. In: Proceedings of the Twenty-Five Text RE trieval Conference (TREC 2016), Nov 2016, Gaithersburg, United States
- 44 Simpson MS, Voorhees EM, Hersh W. Overview of the TREC 2014 Clinical Decision Support Track. In: Proceedings of the 2014 Text Retrieval Conference
- 45 Bethard S, Derczynski L, Savova G, Pustejovsky J, Verhagen M. SemEval-2015 Task 6: Clinical TempEval. In: SemEval@NAACL-HLT 2015 Jun 4. p. 806–14. ( http://aclweb.org/anthology/S/S15/S15-2136.pdf )
- 46 Bethard S, Savova G, Chen WT, Derczynski L, Pustejovsky J, Verhagen M. Semeval-2016 Task 12: Clinical TempEval. Proceedings of the 10th International Workshop on Semantic Evaluations (SemEval-2016); 2016. p. 1052–62. ( http://www.aclweb.org/anthology/S16-1165 )
- 47 Lee HJ, Xu H, Wang J, Zhang Y, Moon S, Xu J. , et al. UTHealth at SemEval-2016 Task 12: an End-to- End System for Temporal Information Extraction from Clinical Notes. In: SemEval@ NAACL-HLT 2016. p. 1292–17. ( http://www.aclweb.org/anthology/S16-1201 )
- 48 Bethard S, Savova G, Palmer M, Pustejovsky J. SemEval-2017 Task 12: Clinical TempEval. Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017); 2017. p. 565–72. ( http://aclweb.org/anthology/S17-2000 )
- 49 MacAvaney S, Cohan A, Goharian N. GUIR at SemEval- 2017 Task 12: A Framework for Cross-Domain Clinical Temporal Information Extraction. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) 2017. p. 1024–9. ( http://www.aclweb.org/anthology/S17-2180 )
- 50 Tourille J, Ferret O, Névéol A, Tannier X. LIMSI- COT at SemEval-2016 Task 12: Temporal relation identification using a pipeline of classifiers. In: SemEval@NAACL-HLT 2016. p. 1136–42. ( http://www.aclweb.org/anthology/S16-1175 )
- 51 Uzuner Ö, Stubbs A, Filannino M. A natural language processing challenge for clinical records: Research Domains Criteria (RDoC) for psychiatry. J Biomed Inform 2017; Oct 16; 75: S1-S3 . ( https://doi.org/10.1016/j.jbi.2017.10.005 )
- 52 Stubbs A, Filannino M, Uzuner Ö. De-identification of psychiatric intake records: Overview of 2016 CEGS N-GRID Shared Tasks Track 1. J Biomed Inform 2017; Nov; 75S: S4-S18
- 53 Filannino M, Stubbs A, Uzuner Ö. Symptom severity prediction from neuropsychiatric clinical records: Overview of 2016 CEGS N-GRID Shared Tasks Track 2. J Biomed Inform 2017; Nov; 75S: S62-S70
- 54 Uzuner Ö, Luo Y, Szolovits P. Evaluating the stateof- the-art in automatic de-identification. J Am Med Inform Assoc 2007; Sep 1; 14 (05) 550-63
- 55 Jiang Z, Zhao C, He B, Guan Y, Jiang J. De-identification of medical records using Conditional Random Fields and Long Short-Term Memory networks. J Biomed Inform 2017; Nov; 75S: S43-S53
- 56 Clements D, Dault M, Priest A. Effective teamwork in healthcare: research and reality. Healthc Pap 2007; 7 (I): 26