CC BY-NC-ND 4.0 · Joints 2018; 06(02): 104-109
DOI: 10.1055/s-0038-1660839
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Diagnostic Accuracy of Magnetic Resonance Arthrography in Detecting Intra-articular Pathology Associated with Femoroacetabular Impingement

Christian Carulli
1   Orthopaedic Clinic, Orthopaedic Traumatologic Center, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
,
Filippo Tonelli
1   Orthopaedic Clinic, Orthopaedic Traumatologic Center, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
,
Tommaso Melani
1   Orthopaedic Clinic, Orthopaedic Traumatologic Center, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
,
Michele Pietragalla
2   Radiology Unit, Orthopaedic Traumatologic Center, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
,
Alioscia Giancarlo Domenico De Renzis
2   Radiology Unit, Orthopaedic Traumatologic Center, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
,
Giuseppe Caracchini
2   Radiology Unit, Orthopaedic Traumatologic Center, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
,
Massimo Innocenti
1   Orthopaedic Clinic, Orthopaedic Traumatologic Center, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
› Author Affiliations
Further Information

Publication History

31 August 2017

13 May 2018

Publication Date:
20 June 2018 (online)

Abstract

Purpose The aim of this study was to assess the diagnostic accuracy of magnetic resonance arthrography (MRA) in the detection of intra-articular lesions of the hip in patients affected by femoroacetabular impingement (FAI) by using arthroscopy as reference standard.

Methods Twenty-nine consecutive hip arthroscopies performed in 24 patients were considered for the study. Patients had a mean age of 38.3 years. Ultrasound-guided 1.5-T MRA was performed with precontrast short tau inversion recovery, T1-weighted and PD coronal, T1-weighted, and T2-weighted axial with 3-mm-thick slice sequences, and postcontrast T1-weighted fat saturation MRA (Fat-SAT) axial, coronal and oblique sagittal, and T1-weighted Vibe 3D coronal sequences with MPR sagittal, axial, and radial reconstructions with 2-mm-thick slice and coronal density protonil (DP) Fat-SAT. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MRA were evaluated by comparison arthroscopy for the following intra-articular findings: acetabular and femoral chondral lesions, labral degeneration, labral tears, synovitis, ligamentum teres (LT) tears, CAM lesions, pincer lesions, loose bodies, and osteophytes.

Results An absolute per cent agreement (100%) was observed for all the variables in the assessment of CAM lesions. Sensitivity, specificity, PPV, and NPV of MRA were 100, 68.4, 72.7, and 100%, respectively, for acetabular chondral lesions; 100, 50, 47.3, and 100%, respectively, for femoral chondral lesions; 33, 85, 20, and 91.6%, respectively, for labral tears; 95, 71, 91.3, and 83.3%, respectively, for labral degeneration; 100, 88, 57.1, and 100%, respectively, for LT tears; 33.3, 85, 50, and 73.9%, respectively, for pincer lesions; 50, 96, 66.6, and 92.3%, respectively, for intra-articular loose bodies; and 100, 73.9, 50, and 100%, respectively, for osteophytes.

Conclusion MRA may play an important role in detecting intra-articular lesions associated with FAI. This might be helpful for the preoperative planning before hip arthroscopy.

Level of Evidence This is a Level 2, diagnostic accuracy study compared with gold standard.

 
  • References

  • 1 Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 2003; (417) 112-120
  • 2 Ng VY, Arora N, Best TM, Pan X, Ellis TJ. Efficacy of surgery for femoroacetabular impingement: a systematic review. Am J Sports Med 2010; 38 (11) 2337-2345
  • 3 Malviya A, Stafford GH, Villar RN. Impact of arthroscopy of the hip for femoroacetabular impingement on quality of life at a mean follow-up of 3.2 years. J Bone Joint Surg Br 2012; 94 (04) 466-470
  • 4 Beaulé PE, Allen DJ, Clohisy JC, Schoenecker P, Leunig M. The young adult with hip impingement: deciding on the optimal intervention. J Bone Joint Surg Am 2009; 91 (01) 210-221
  • 5 Klaue K, Durnin CW, Ganz R. The acetabular rim syndrome. A clinical presentation of dysplasia of the hip. J Bone Joint Surg Br 1991; 73 (03) 423-429
  • 6 Bredella MA, Ulbrich EJ, Stoller DW, Anderson SE. Femoroacetabular impingement. Magn Reson Imaging Clin N Am 2013; 21 (01) 45-64
  • 7 Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis--what the radiologist should know. Am J Roentgenol 2007; 188 (06) 1540-1552
  • 8 Harris WH. Etiology of osteoarthritis of the hip. Clin Orthop Relat Res 1986; (213) 20-33
  • 9 Stulberg SD. Unrecognized childhood hip disease: a major cause of idiopathic osteoarthritis of the hip. In: Cordell LD, Harris WH, Ramsey PL, MacEwen GD. , eds. The Hip: Proceedings of the Third Open Scientific Meeting of the Hip Society. St Louis, MO: CV Mosby; 1975: 212-228
  • 10 Byrd JW, Jones KS. Hip arthroscopy in athletes: 10-year follow-up. Am J Sports Med 2009; 37 (11) 2140-2143
  • 11 Philippon MJ, Briggs KK, Yen YM, Kuppersmith DA. Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction: minimum two-year follow-up. J Bone Joint Surg Br 2009; 91 (01) 16-23
  • 12 Bedi A, Dolan M, Magennis E, Lipman J, Buly R, Kelly BT. Computer-assisted modeling of osseous impingement and resection in femoroacetabular impingement. Arthroscopy 2012; 28 (02) 204-210
  • 13 Gold SL, Burge AJ, Potter HG. MRI of hip cartilage: joint morphology, structure, and composition. Clin Orthop Relat Res 2012; 470 (12) 3321-3331
  • 14 Li AE, Jawetz ST, Greditzer IV HG, Burge AJ, Nawabi DH, Potter HG. MRI for the preoperative evaluation of femoroacetabular impingement. Insights Imaging 2016; 7 (02) 187-198
  • 15 Bulat E, Bixby SD, Siversson C, Kalish LA, Warfield SK, Kim YJ. Planar dGEMRIC maps may aid imaging assessment of cartilage damage in femoroacetabular impingement. Clin Orthop Relat Res 2016; 474 (02) 467-478
  • 16 Röling MA, Visser MI, Oei EHG, Pilot P, Kleinrensink G-J, Bloem RM. A quantitative non-invasive assessment of femoroacetabular impingement with CT-based dynamic simulation--cadaveric validation study. BMC Musculoskelet Disord 2015; 16: 50
  • 17 Li AE, Jawetz ST, Greditzer IV HG, Burge AJ, Nawabi DH, Potter HG. MRI for the preoperative evaluation of femoroacetabular impingement. Insights Imaging 2016; 7 (02) 187-198
  • 18 Dunn DM. Anteversion of the neck of the femur; a method of measurement. J Bone Joint Surg Br 1952; 34-B (02) 181-186
  • 19 Meyer DC, Beck M, Ellis T, Ganz R, Leunig M. Comparison of six radiographic projections to assess femoral head/neck asphericity. Clin Orthop Relat Res 2006; 445 (445) 181-185
  • 20 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B: 752-757
  • 21 Weir A, Brukner P, Delahunt E. , et al. Doha agreement meeting on terminology and definitions in groin pain in athletes. Br J Sports Med 2015; 49 (12) 768-774
  • 22 Bedi A, Dolan M, Leunig M, Kelly BT. Static and dynamic mechanical causes of hip pain. Arthroscopy 2011; 27 (02) 235-251
  • 23 Leunig M, Beck M, Kalhor M, Kim YJ, Werlen S, Ganz R. Fibrocystic changes at anterosuperior femoral neck: prevalence in hips with femoroacetabular impingement. Radiology 2005; 236 (01) 237-246
  • 24 Smith TO, Hilton G, Toms AP, Donell ST, Hing CB. The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol 2011; 21 (04) 863-874
  • 25 Byrd JW, Jones KS. Hip arthroscopy for labral pathology: prospective analysis with 10-year follow-up. Arthroscopy 2009; 25 (04) 365-368
  • 26 Ho CP, Ommen ND, Bhatia S. , et al. Predictive value of 3-T magnetic resonance imaging in diagnosing grade 3 and 4 chondral lesions in the hip. Arthroscopy 2016; 32 (09) 1808-1813
  • 27 Mintz DN, Hooper T, Connell D, Buly R, Padgett DE, Potter HG. Magnetic resonance imaging of the hip: detection of labral and chondral abnormalities using noncontrast imaging. Arthroscopy 2005; 21 (04) 385-393
  • 28 González Gil AB, Llombart Blanco R, Díaz de Rada P. Validity of magnetic resonance arthrography as a diagnostic tool in femoroacetabular impingement syndrome. Rev Esp Cir Ortop Traumatol 2015; 59 (04) 281-286
  • 29 Sahin M, Calisir C, Omeroglu H, Inan U, Mutlu F, Kaya T. Evaluation of labral pathology and hip articular cartilage in patients with femoroacetabular impingement (FAI): comparison of multidetector CT arthrography and MR arthrography. Pol J Radiol 2014; 79: 374-380
  • 30 Nepple JJ, Prather H, Trousdale RT. , et al. Diagnostic imaging of femoroacetabular impingement. J Am Acad Orthop Surg 2013; 21 (Suppl. 01) S20-S26
  • 31 Byrd JW, Jones KS. Traumatic rupture of the ligamentum teres as a source of hip pain. Arthroscopy 2004; 20 (04) 385-391
  • 32 Philippon MJ, Pennock A, Gaskill TR. Arthroscopic reconstruction of the ligamentum teres: technique and early outcomes. J Bone Joint Surg Br 2012; 94 (11) 1494-1498
  • 33 Martin RL, Kivlan BR, Clemente FR. A cadaveric model for ligamentum teres function: a pilot study. Knee Surg Sports Traumatol Arthrosc 2013; 21 (07) 1689-1693
  • 34 Botser IB, Martin DE, Stout CE, Domb BG. Tears of the ligamentum teres: prevalence in hip arthroscopy using 2 classification systems. Am J Sports Med 2011; 39 (Suppl): 117S-125S