Thromb Haemost 1997; 78(01): 145-150
DOI: 10.1055/s-0038-1657518
Molecular defects in rare bleeding disorders
Schattauer GmbH Stuttgart

Molecular Defects in Rare Bleeding Disorders: Hereditary Haemorrhagic Telangiectasia

Claire L Shovlin
Department of Genetics, Harvard Medical School, Boston, MA, USA; Royal Postgraduate Medical School, London, England, UK
› Author Affiliations
Further Information

Publication History

Publication Date:
12 July 2018 (online)

 
  • References

  • 1 Rendu H. Épistaxis répetées chez un sujet porteur de petits angiomes cutanés et muquez. Gazette des Hopitaux (Paris) 1896; 135: 1322-1323
  • 2 Plauchu H, de Chadarévian JP, Bideau A, Robert J-M. Age-re lated profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet 1989; 32: 291-297
  • 3 Haitjema T, Westermann CJJ, Overtoom TTC, Timmer R, Disch F, Mauser H, Lammers J-WJ. Hereditary haemorrhagic telangiectasia (Osler-Weber-Rendu syndrome)-New insights in pathogenesis, complications, and treatment. Archives of Internal Medicine 1996; 156: 714-719
  • 4 Guttmacher AE, Marchuk DA, White RI. Hereditary hemorrhagic telangiectasia. New Engl J Med 1995; 333: 918-924
  • 5 Shovlin CL, Winstock AR, Peters AM, Jackson JE, Hughes JMB. Medical complications of pregnancy in hereditary haemorrhagic telangiectasia. Quart J Med 1995; 88: 879-887
  • 6 Braverman IM, Keh-Yen A, Jacobson BS. Ultrastructure and threedimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol 1990; 95: 422-427
  • 7 Braverman IM, Keh-Yen A. Ultrastructure and three-dimensional reconstruction of several macular and papular telangiectases. J Invest Dermatol 1983; 81: 489-497
  • 8 Maire R, Schnewlin G, Bollinger A. Videomikroskopische Untersuchungen von Telangiektasien bei Morbus Osier und Sclerodermie. Schweiz. med Wschr 1986; 116: 335-338
  • 9 Shovlin CL, Scott J. Inherited diseases of the vasculature. Ann Rev Physiol 1996; 58: 483-507
  • 10 Quick AJ. Telangiectasia: its relationship to the Minot-von Willebrand syndrome. Am J Med Sd 1967; 254: 585-601
  • 11 Conlon CL, Weinger RS, Cimo PL, Moake JL, Olson JD. Telangiectasia and von Willebrand’s disease in two families. Ann Int Med 1978; 89: 921-924
  • 12 Hanna W, McCarioll D, Lin D, Chua W, McDonald TP, Chen J, Congdon C, Lange RD. A study of a Caucasian family with variant von Willebrand’s disease in association with vascular telangiectasia and haemoglobinopathy. Thromb Haemostas 1984; 51 (02) 275-278
  • 13 Larsson SO. Osier’s disease with impaired adhesion and aggregation of platelets. Acta Medica Scandinavica 1974; 196: 133-136
  • 14 Maggi CA, Ballarin E, Comin U, Mannucci PM. Hemorrhagic telangiectasia and hemophilia A: an occasional association?. Haematologica 1983; 68: 399-404
  • 15 Ferran M, Arderiu A, Vilardell M, Tornos J. Hereditary hemorrhagic telangiectasia and congenital factor XI deficiency. Medicina Clinica 1986; 86: 425-427
  • 16 Kwaan HC, Silverman S. Fibrinolytic activity in lesions of hereditary hemorrhagic telangiectasia. Arch Dermatol 1973; 107: 571-573
  • 17 Saba HI, Morelli GA, Logrono LA. Treatment of bleeding in hereditary hemorrhagic telangiectasia with aminocaproic acid. New Engl J Med 1994; 330: 1789-1790
  • 18 Van Cutsem E. Oestrogen-progesterone, a new therapy of bleeding gastrointestinal vascular malformations. Acta Gastro-Enterologica Belgica 1993; 56: 02-10
  • 19 Akhurst RJ. The transforming growth factor β family in vertebrate embryogenesis. In: Growth factors and signal transduction in development. Nilsen-Hamilton M. ed Wiley-Liss, New York: 1994. pp 097-122
  • 20 Massague J. TGFb signaling: receptors, transducers and MAD proteins. Cell 1996; 85: 947-950
  • 21 Marcias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996; 87: 1215-1214
  • 22 McDonald MT, Papenberg KA, Ghosh S, Glatfelder AA, Biesecker BB, Helmbold EA, Markel DS, Zolotor A, McKinnon WC, Vanderstoep JL, Jackson CE, Iannuzzi M, Collins FS, Boehnke M, Porteous ME, Guttmacher AE, Marchuk DA. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34. Nature Gen 1994; 06: 197-204
  • 23 Shovlin CL, Hughes JMB, Tuddenham EGD, Temperley I, Perembelon YFN, Scott J, Seidman CE, Seidman JG. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nature Gen 1994; 06: 205-209
  • 24 Vincent P, Plauchu H, Hazan J, Fauré S, Weissenbach J, Godet J. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum Mol Genet 1995; 04: 945-949
  • 25 Johnson DW, Berg JN, Gallione CJ, McAllister KA, Warner JP, Helmbold EA, Markel DS, Jackson CE, Porteous MEM, Marchuk DA. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Research 1995; 05: 21-28
  • 26 Piantanida M, Buscarini E, Dellavecchia C, Minelli A, Rossi A, Buscarini L, Danesino C. Hereditary haemorrhagic telangiectasia with extensive liver involvement is not caused by either HHT1 or HHT2. J Med Genet 1996; 33: 441-443
  • 27 McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Pericak-Vance MA, Heutink P, Oostra BA, Haitjema T, Westerman CJJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Gen 1994; 08: 345-351
  • 28 Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marodel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous MEM, Marchuk DA. Mutations in the activin receptorlike kinase 1 gene in hereditary hemorrhagic telangiectasia type. Nature Gen 1996; 13: 189-195
  • 29 McAllister KA, Baldwin MA, Thukkani AK, Gallione CJ, Berg JN, Porteous ME, Guttmacher AE, Marchuk DA. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type I suggest a dominant-negative effect of receptor function. Hum Mol Genet 1995; 04: 1983-1985
  • 30 Shovlin CL, Hughes JMB, Scott J, Seidman CE, Seidman JG. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Gen. 1997 in press.
  • 31 Muller J-Y, Michailov T, Izrael V, Bernard J. Maladie de Rendu-Osler dans une grande famille saharienne. La Nouvelle Presse Medicale 1978; 07: 1723-1725
  • 32 Gougos A, Letarte M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J Immunol 1988; 141: 1925-1933
  • 33 Westphal JR, Willems HW, Schalkwijk CJM, Ruiter DJ, deWaal RMW. A new 180-kDa dermal endothelial cell activation antigen: in vitroand in situcharacteristics. J Invest Dermatol 1993; 100: 27-34
  • 34 Wang JM, Kumar S, van AgthovenAJ, Kumar P, Pye D, Hunter RD. Irradiation induces up-regulation of E9 protein (CD105) in human vascular endothelial cells. Int J Cancer 1995; 62: 791-796
  • 35 Zhang H, Shaw ARE, Mak A, Letarte M. Endoglin is a component of the transforming growth factor (TGF)-β receptor complex of human pre-B leukemic cells. J Immunol 1996; 156: 565-573
  • 36 Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J, Letarte M. Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J Biol Chem 1992; 267: 19027-19030
  • 37 Yamashita H, Ichijoro H, Grimsby S, Moren A, ten DijkeP, Miyazono K. Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factor-β. J Biol Chem 1994; 269: 1995-2001
  • 38 Lastres P, Letamendia A, Zhang H, Ruis C, Almendro N, Raab U, Lopez LA, Langa C, Fabra A, Letarte M, Bernabeu C. Endoglin modulates cellular responses to TGF-β1. J Cell Biol 1996; 133: 1109-1121
  • 39 Hanks SK, Hunter T. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 1995; 09: 576-596
  • 40 Panchenko M, Mikhail P, Williams MC, Brody JS, Yu Q. Type I receptor serine-threonine kinase preferentially expressed in pulmonary blood vessels. Am J Physiol 1996; 270: L547-L558
  • 41 Attisano L, Wrana JL, Cheifetz S, Massague J. Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 1992; 68: 097-108
  • 42 ten DijkeP, Yamashita H, Ichijo H, Franzen P, Laiho M, Miyazono K, Heldin C-H. Characterization of type I receptors for transforming growth factor-β and activin. Science 1994; 264: 101-103
  • 43 Berg JN, Guttmacher AE, Marchuk DA, Porteous MEM. Clinical heterogeneity In hereditary haemorrhagic telangiectasia are pulmonary arteriovenous malformations more common in families linked to endoglin?. J Med Genet 1996; 33 (03) 256-257
  • 44 Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J Biol Chem 1994; 269: 6271-6274
  • 45 Alexandrow MG, Moses HL. Transforming growth factor β and cell cycle regulation. Cancer Res 1995; 55: 1452-1457
  • 46 Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, Grace AA, Schofield PM, Chauhan A. The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis. Nature Med 1995; 01: 74-79
  • 47 Koh GY, Kim S-J, Klug MG, Park K, Soonpaa MH, Field LJ. Targeted expression of transforming growth factor-β1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest 1995; 95: 114-121
  • 48 Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis. Cell 1996; 87: 1153-1155
  • 49 Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. J Clin Invest 1995; 95: 1363-1369
  • 50 Clark ER, Clark EL. Microscopic observations on the extra-endothelial cells of living mammalian blood vessels. Am J Anat 1940; 66: 02-49
  • 51 Suri C, Jones PF, Patan S, Bartunkova S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171-1180
  • 52 Vikkula M, Boon LM, Cairaway III KL, Calvert JT, Diamond AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR. Vascular dysmoiphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 1996; 87: 1181-1190
  • 53 McCarthy SA, Bicknell R. Inhibition of vascular endothelial cell growth by activin-A. J Biol Chem 1993; 268: 23066-23071