Thromb Haemost 1997; 77(04): 704-709
DOI: 10.1055/s-0038-1656038
Coagulation
Schattauer GmbH Stuttgart

Degree of Polymer Organization Decreases the Binding of a Monoclonal Antibody Raised against the β-Chain Amino Terminus of Fibrin

Timothy A Morris
1   The University of California, School of Medicine and the Department of Medicine, Division of Pulmonary/Critical Care, UCSD Medical Center, San Diego, California
,
James J Marsh
1   The University of California, School of Medicine and the Department of Medicine, Division of Pulmonary/Critical Care, UCSD Medical Center, San Diego, California
,
Roberto Fagnani
2   Hybritech Inc., San Diego, California, USA
,
Michael Hagan
2   Hybritech Inc., San Diego, California, USA
,
Kenneth M Moser
1   The University of California, School of Medicine and the Department of Medicine, Division of Pulmonary/Critical Care, UCSD Medical Center, San Diego, California
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 10. April 1996

Accepted after resubmission 19. Dezember 1996

Publikationsdatum:
11. Juli 2018 (online)

Summary

Accurate non-invasive diagnosis of deep venous thrombosis and pulmonary embolism remains an elusive goal. Radiolabeled antibodies specific for the epitope exposed on the β-chain of fibrin after fibrino- peptide B release (anti-β) enabled in situ imaging of thrombi in experimental subjects with nuclear medicine techniques. When used in patients anticoagulated for thrombo-embolic disease, however, the antibody was unable to reliably image the thrombi. We postulated that the neoepitope on the β-chain of fibrin is covered up as fibrin organizes into a polymer network and is therefore exposed to the antibody only during active incorporation of fibrin subunits. We determined the equilibrium binding kinetics of an anti-β monoclonal antibody to fibrin in various stages of organization. The concentration of exposed epitopes on immobilized fibrin monomers was equal to the molar concentration of fibrin β-chains. The percentage of β-chains exposed to the antibodies markedly decreased as the fibrin network was allowed to organize, a process catalyzed by calcium. Conclusions: The β-chain amino terminus of fibrin is exposed transiently as subunits are added to the enlarging fibrin network. Anti-β antibodies bind preferentially to actively enlarging fibrin polymers.

 
  • References

  • 1 Dalen JE, Alpert JS. Natural History of Pulmonary Embolism. Progress in Cardiovascular Diseases 1975; 17 (04) 259-270
  • 2 Lilienfeld DE, Godbold JH, Burke GL, Sprafka JM, Pham DL, Baxter J. Hospitalization and Case Fatality for Pulmonary Embolism in the Twin Cities: 1979-1984. American Heart Journal 1990; 120 (02) 392-395
  • 3 Anderson FA, Wheeler HB, Goldberg RJ, Hosmer DW, Patwardhan NA, Jovanovic B, Forcier A, Dalen JE. A Population-Based Perspective of the Hospital Incidence and Case Fatality Rates of Deep Vein Thrombosis and Pulmonary Embolism. Arch Intern Med 05/1991; 151: 933-938
  • 4 Goldhaber SZ, Hennekens CH, Evans DA, Newton EC, Godleski JJ. Factors Associated with Correct Antemortem Diagnosis of Major Pulmonary Embolism. Am J Med 1982; 73: 822-826
  • 5 Rubenstein I, Murray D, Hoffstein V. Fatal Pulmonary Emboli in Hospitalized Patients. Arch Intern Med 1988; 148: 1425-1426
  • 6 Karwinski ES. Comparison of Clinical and Postmortem Diagnosis of Pulmonary Embolism. J Clin Pathol 1989; 42: 135-139
  • 7 Israel H, Goldstien F. The Varied Clinical Manifestations of Pulmonary Embolism. Ann Intern Med 1957; 47 (02) 1477-1480
  • 8 Hoellerich VL, Wigton RS. Diagnosing Pulmonary Embolism Using Clinical Findings. Arch Intern Med 1986; 146 sept 1699-1704
  • 9 Hull RD, Hirsh J, Carter CJ, Raskob GE, Gill GJ, Jay RM, Leclerc JR, David M, Coates G. Diagnostic Value of Ventilation-Perfusion Lung Scanning in Patients with Suspected Pulmonary Embolism. Chest 1985; 88 (06) 819-828
  • 10 The PIOPED Investigators Value of the Ventilation/Perfusion Scan in Acute Pulmonary Embolism. Results of the Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED). JAMA 1990; 263 (20) 2753-2759
  • 11 Hull RD, Raskob GE, Pinco GF, Brant RF. The Low Probability Lung Scan. Arch Intern Med 09/1995; 155 25 1845-1851
  • 12 Heijboer H, Buller HR, Lensing AWA, Turpie AGG, Colly LP, ten CateJW. A Comparison of Real-time Compression Ultrasonography with Impedance Plethysmography for the Diagnosis of Deep-vein Thrombosis in Symptomatic Outpatients. NEJM 1993; 329 (19) 1365-1369
  • 13 Huisman MV, Buller HR, ten Cate JW, Vreeken J. Serial Impedance Plethysmography for Suspected Deep Venous Thrombosis in Outpatients: The Amsterdam General Practitioner Study. NEJM 1986; 314 (13) 823-828
  • 14 Anderson DR, Lensing AWA, Wells PS, Levine MN, Weitz JI, Hirsh J. Limitations of Impedance Plethysmography in the Diagnosis of Clinically Suspected Deep-Vein Thrombosis. Ann Intern Med 1993; 118: 25-30
  • 15 Pedersen OM, Aslaksen A, Vik-Mo H, Bassoe AM. Compression Ultrasonography in Hospitalized Patients with Suspected Deep Venous Thrombosis. Arch Intern Med 1991; 151: 2217-2220
  • 16 Mitchell DC, Grasty MS, Stebbings WSL, Nockler IB, Lewars MD, Levison RA, Wood RFM. Comparison of Duplex Ultrasonography and Venography in the Diagnosis of Deep Venous Thrombosis. Br J Surg 1991; 78: 611-613
  • 17 Ginsberg JS, Shin A, Turpie AGG, Hirsh J. Detection of Previous Proximal Venous Thrombosis with Doppler Ultrasonography and Photoplethysmography. Arch Intern Med 1989; 149: 2255-2257
  • 18 Hantgan RR, Francis CW, Scheraga HA. et al. Fibrinogen Structure and Function. In: Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Colman RW, Hirsh J, Marder VJ, Salzman EW. eds. J.B. Lippincott Company; Philadelphia: 1919. pp 269-283
  • 19 Mosesson MW. Fibrin Polymerization and Its Regulatory Role in Hemostasis. J Lab Clin Med 1990; 116 (01) 08-17
  • 20 Hui KY, Haber E, Matsueda GR. Monoclonal Antibodies to a Synthetic Fibrin-Like Peptide Bind to Human Fibrin but not Fibrinogen. Science 1983; 222: 1129-1132
  • 21 Kudryk B, Rohoza A, Ahadi M, Chin J, Wiebe ME. Specificity of a Monoclonal Antibody for the NH2-Terminal Region of Fibrin. Molec Immun 1992; 21 (01) 89-94
  • 22 Rosebrough SF, Grossman ZD, McAfee JG, Kudryk BJ, Subramanian G, Ritter-Hmcirik CA, Witanowski LS, Yillapaugh-Fay G, Urritia E, Zapf-Longo C. Thrombus Imaging with Indium-111 and Iodine-131-Labeled Fibrin-Specific Monoclonal Antibody and its F(ab’)2 and Fab Fragments. J Nuc Med 1988; 29: 1212-1222
  • 23 Knight LC, Maurer AH, Ammar IA, Epps LA, Dean RT, Pak KY, Berger HJ. Tc-99m Antifibrin Fab’ Fragments for Imaging Venous Thrombi: Evaluation in a Canine Model. Radiology 1989; 173: 163-169
  • 24 Rosebrough SF, Grossman ZD, McAfee JG, Kudryk BJ, Subramanian G, Ritter-Hmcirik CA, Witanowski LS, Tillapaugh-Fay G, Urrutia E. Aged Venous Thrombi: Radioimmunoimaging with Fibrin-Specific Antibody. Radiology 1987; 162: 575-577
  • 25 Lusiani L, Zanco P, Visona A, Breggion G, Pagnan A, Ferlin G. Immunoscintigraphic Detection of Venous Thrombosis of the Lower Extremities by Means of Human Anitfibrin Monoclonal Antibodies Labeled with In-111. Angiology 1989; 671-677
  • 26 Alavi A, Palevsky HI, Gupta N, Meranze S, Kelly MA, Jatlow AD, Schaible TF, Brown J, Berger HJ. Radiolabeled Antifibrin Antibody in the Detection of Venous Thrombosis: Preliminary Results. Radiology 1990; 175: 79-85
  • 27 Alavi A, Gupta N, Palevsky HI, Kelly MA, Jatlow AD, Byar AA, Berger HJ. Detection of Thrombophlebitis with In111-labeled Anti-Fibrin Antibody: Preliminary Results. Cancer Res 1990; 50 (suppl) 958s-961s
  • 28 Jung M, Kletter K, Dudczak R, Koppensteiner R, Minar E, Kahls P, Stumpflen A, Pokieser P, Ehringer H. Deep Vein Thrombosis: Scintigraphic Diagnosis with In111 labeled Monoclonal Antifibrin Antibodies. Radiology 1989; 173: 469-475
  • 29 Pandya BV, Gabriel JL, O’Brien J, Budzinski A. Polymerization Site in the Beta Chain of Fibrin: Mapping of the Bbetal-55 Sequence. Biochem 1991; 30: 162-168
  • 30 Yamazumi K, Doolittle RF. Photoaffinity Labeling of the Primary Fibrin Polymerization Site: Localization of the Label to Tyrosine gamma 363. Proc Natl Acad Sci USA 1992; 89 (07) 2893-2896
  • 31 Laudano AP, Doolittle RF. Influence of Calcium Ion on the Binding of Fibrin Amino Terminal Peptides to Fibrinogen. Science 1981; 212 (24) 457-459
  • 32 Bucheggar FR, Accolla RS, Carrel S, Caruagala A, Giradet C, Mach JP. Use of Monoclonal Anti-CEA Antibodies in Immunosorbent Columns and Solid-Phase Radioimmunotherapy. Protides Biol Fluids Proc Colloq 1980; 25: 51
  • 33 Laemmli U. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature 1970; 227: 680-685
  • 34 Mears CF, Wensel TG. Metal Chelates as Probes of Biological Systems. AccChem Res 1984; 17: 202-209
  • 35 Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA. Determination of the Immunoreactive Fraction of Radiolabled Monoclonal Antibodies by Linear Extrapolation to Binding at Infiniter Antigen Excess. J Immunol Methods 1984; 72: 77-89
  • 36 Nilsson IM. Clinical Pharmacology of Aminocaproic and Tranexamic Acids. J Clin Pathol 1980; 33 (14) 41-47
  • 37 Altman DG. Practical Statistics for Medical Research. New York: Chapman and Hall; 1991
  • 38 Klotz IM. Introduction to Biomolecular Energetics: Including LigandReceptor Interactions. Orlando: Academic Press, Inc; 1986
  • 39 Frankel ME, Gerhard W. The Rapid Determination of Binding Constants for Antiviral Antibodies by a Radioimmunoassay. An Analysis of the Interaction between Hybridoma Proteins and Influenza Virus. Molec Immun 1992
  • 40 Day ED. Affinity. In: Advanced Immunochemistry. Anonymous WileyLiss; New York: 1990. pp 296-299
  • 41 Morris TA, Marsh JJ, Konopka R, Pedersen C, Chiles P, Moser KM. Antifibrin Antibodies Detect Deep Vein Thrombosis in a Canine Model. Chest 1993; 104: 24
  • 42 Cerqueira MD, Stratton JR, Vracko R, Schaible TF, Ritchie JL. Noninvasive Arterial Thrombus Imaging with 99-m Technetium Monoclonal Antifibrin Antibody. Circulation 1992; 85: 298-304
  • 43 Rosebrough SF, McAfee JG, Grossman ZD, Kudryk BJ, Ritter-Hmcirik CA, Witanowski LS, Maley BL, Bertrand EA, Gagne GM. Thrombus Imaging,: A Comparison of Radiolabeled GC4 and T2Gls Fibrin-Specific Monoclonal Antibodies. J Nuc Med 1990; 31: 1048-1054
  • 44 Knight LC, Maurer AH, Ammar IA, Shealy DJ, Mattis JA. Evaluation of Indium-111-Labeled Anti-Fibrin Antibody for Imaging Vascular Thrombi. J Nuc Med 1988; 29: 494-502
  • 45 Morris TA, Marsh JJ, Konopka R, Pedersen C, Chiles P, Moser KM. The Effect of Anticoagulation on the Imaging of Thrombi with an Anti-fibrin Monoclonal Antibody. Am J Respir Crit Care Med 1994; 149: A1
  • 46 Oster ZH, Som P. Of Monoclonal Antibodies and Thrombus-Specific Imaging. J Nuc Med 1992; 31 (06) 1055-1058
  • 47 Knight LC. Do We Finally Have a Radiopharmaceutical for Rapid, Specific Imaging of Venous Thrombosis? (editorial). J Nuc Med 1991; 32 (05) 791-795
  • 48 Hunziker EB, Straub PW, Haeberli A. A new concept of fibrin formation based upon the linear growth of interlacing and branching polymers and molecular alignment into interlocked single-stranded segments. J Biological Chemistry 1990; 265 (13) 7455-7463
  • 49 Procyk R, Kudryk B, Callender S, Blomback B. Accessibility of Epitopes on Fibrin Clots and Fibrinogen Gels. Blood 1991; 77 (07) 1469-1475
  • 50 Morris TA, Marsh JJ, Konopka RG, Pedersen CA, Chiles PG, Moser KM. Ability of Low Molecular Weight Heparin to Inhibit Propagation of Deep Venous Thrombosis. American Journal of Respiratory and Critical Care Medicine 1995; 151 (04) A528
  • 51 Sudlow MF, Campbell IA. Optimum Duration of Anticoagulation for Deep-Vein Thrombosis and Pulmonary Embolism. Lancet 1992; 340: 873-876
  • 52 Schulman S, Rhedin AS. A Comparison of Six Weeks with Six Months of Oral Anticoagulant Therapy after a First Episode of Venous Thromboembolism. N Engl J Med 1995; 332 (25) 1661-1665
  • 53 Hyers TM, Hull RD, Weg JG. Antithrombotic Therapy for Venous Thromboembolic Disease. Chest 1995; 108 (04) 335S-351S