Thromb Haemost 1997; 77(02): 243-247
DOI: 10.1055/s-0038-1655946
Original Article
Schattauer GmbH Stuttgart

A Novel Missense Mutation in the Endoglin Gene in Hereditary Hemorrhagic Telangiectasia

Hiroshi Yamaguchi
1   The First Department of Internal Medicine, School of Medicine, The University of Tokushima, Tokushima, Japan
,
Hiroyuki Azuma
1   The First Department of Internal Medicine, School of Medicine, The University of Tokushima, Tokushima, Japan
,
Toshio Shigekiyo
1   The First Department of Internal Medicine, School of Medicine, The University of Tokushima, Tokushima, Japan
,
Hideo Inoue
2   Department of Internal Medicine, Anan Kyoei Hospital, Tokushima, Japan
,
Shiro Saito
1   The First Department of Internal Medicine, School of Medicine, The University of Tokushima, Tokushima, Japan
› Author Affiliations
Further Information

Publication History

Received 06 August 1996

Accepted after revision 08 October 1996

Publication Date:
10 July 2018 (online)

Summary

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by multisystem vascular dysplasia and recurrent hemorrhage. Recent investigation has mapped one of the responsible genes for HHT to chromosome 9q33-q34; subsequently, nine different mutations have been identified in the endoglin gene, which encodes a transforming growth factor β(TGF-β) binding protein, in nine unrelated families with HHT. We examined the endoglin gene in a Japanese patient with HHT and her family members. Using PCR-SSCP. analysis followed by sequencing, we identified a C to A missense mutation in exon 4 which changed an Ala160 codon(GCT) to an Asp160 codon (GAT). Since this mutation destroys one of three Fnu4H I sites in exon 4, the Fnu4H I digestion patterns of the PCR-amplified exon 4 fragments from each family member were analyzed. In affected members, the restriction patterns were all consistent with a phenotype of HHT. PCR-amplified exon 4 fragments from 150 normal individuals were also analyzed by allele-specific oligonucleotide hybridization analysis. As a result, the mutation was not found in any of them. We conclude that the C to A mutation in exon 4 of the endoglin gene in this proband is responsible for the occurrence of HHT in this family.

 
  • References

  • 1 Guttmacher AE, Marchuk DA, White RI. Hereditary hemorrha giectasia. N Engl J Med 1995; 333: 918-924
  • 2 Reilly PJ, Nostrant TT. Clinical manifestations of hereditary her telangiectasia. Am J Gastroenterol 1984; 79: 363-367
  • 3 Porteous MEM, Bum J, Proctor SJ. Hereditary haemorrhagic telan a clinical analysis. J Med Genet 1992; 29: 527-530
  • 4 Guttmacher AE, Mckinnon WC, Upton MD. Hereditary her telangiectasia: A disorder in search of the genetics community. AM J Med Genet 1994; 52: 252-253 (letter).
  • 5 Haitjema T, Disch F, Overtoom TThC, Westermann CJJ. Lamm Screening family members of patients with hereditary hemorrha giectasia. Am J Med 1995; 99: 519-524
  • 6 Plauchu H, Chadarévian J-P, Bideau A, Robert J-M. Age-relate profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet 1989; 32: 291-297
  • 7 Perry WH. Clinical spectram of hereditary hemorrhagic telangiectasia (Osler-weber-rendu disease). AM J Med 1987; 82: 989-997
  • 8 Bradshaw DA, Murray KM, Mull NH IV. Massive hemoptysis in pregnancy due to a solitary pulmonary arteriovenous malformation. West J Med 1994; 161: 600-602
  • 9 Shovlin CL, Winstock AR, Peters AM, Jackson JE, Hughes JMB. Medical complications of pregnancy in hereditary haemorrhagic telangiectasia. QJ Med 1995; 88: 879-887
  • 10 Vase P, Holm M, Arendrup H. Pulmonary arteriovenous fistulas in hereditary hemorrhagic telangiectasia. Acta Med Scand 1985; 218: 105-109
  • 11 Iannuzzi MC, Hidaka N, Boehnke M, Bruck ME, Hanna WT, Collins FS, Ginsburg D. Analysis of the relationship of von Willebrand disease (vWD) and hereditary hemorrhagic telangiectasia and identification of a potential type II A vWD mutation (lie 865 to Thr). Am J Hum Genet 1991; 48: 757-763
  • 12 Ahr DJ, Rickies FR, Hoyer LW, O’Leary DS, Conrad ME. von Willebrand’s disease and hemorrhagic telangiectasia: Association of two complex disorders of hemostasis resulting in life-threatening hemorrhage. Am J Med 1977; 62: 452-458
  • 13 Hanna W, McCarroll D, Lin D, Chua W, McDonald TP, Chen J, Congdon C, Lange RD. A study of a caucasian family with variant von Willebrand’s disease in association with vascular telangiectasia and haemoglobinopathy. Thromb Haemost 1984; 51: 275-278
  • 14 McDonald MT, Papenberg KA, Ghosh S, Glatfelter AA, Biesecker BB, Helmbold EA, Markel DS, Zolotor A, McKinnon WC, Vanderstoep JL, Jackson CE, Iannuzzi M, Collins FS, Boehnke M, Porteous ME, Guttmacher AE, Marchuk DA. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q 33-34. Nature Genet 1994; 06: 197-204
  • 15 Shovlin CL, Hughes JMB, Tuddenham EGD, Temperley I, Perembelon YFN, Scott J, Seidman CE, Seidman JG. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q 3. Nature Genet 1994; 06: 205-209
  • 16 Porteous MEM, Curtis A, Williams O, Marchuk D, Bhattacharya SS, Burn J. Genetic heterogeneity in hereditary haemorrhagic telangiectasia. J Med Genet 1994; 31: 925-926
  • 17 McAllister KA, Lennon F, Bowles-Biesecker B, McKinnon WC, Helmbold EA, Markel DS, Jackson CE, Guttmacher AE, Pericak-Vance MA, Marchuk DA. Genetic heterogeneity in hereditary haemorrhagic telangiectasia: possible correlation with clinical phenotype. J Med Genet 1994; 31: 927-932
  • 18 Heutink P, Haitjema T, Breedveld GJ, Janssen B, Sandkuijl LA, Bontekoe CJM, Westerman CJJ, Oostra BA. Linkage of hereditary haemorrhagic telangiectasia to chromosome 9q34 and evidence for locus heterogeneity. J Med Genet 1994; 31: 933-936
  • 19 McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J, McCormick MK, Pericak-Vance MA, Heutink P, Oostra BA, Haitjema T, Westerman CJJ, Porteous ME, Guttmacher AE, Letarte M, Marchuk DA. Endoglin, a TGF-β binding protein of endothelial cells is the gene for hereditary haemorrhagi telangiectasia type 1. Nature Genet 1994; 08: 345-351
  • 20 McAllister KA, Baldwin MA, Thukkani AK, Gallione CJ, Berg JN, Porteous ME, Guttmacher AE, Marchuk DA. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum Mol Genet 1995; 04: 1983-1985
  • 21 Johnson DW, Berg JN, Gallione CJ, McAllister KA, Warner JP, Helmbold EA, Markel DS, Jackson CE, Porteous MEM, Marchuk DA. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Res 1995; 05: 21-28
  • 22 Vincent P, Plauchu H, Hazan J, Fauré S, Weissenbach J, Godet J. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum Mol Genet 1995; 04: 945-949
  • 23 Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon S-J, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous MEM, Marchuk DA. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nature Genet 1996; 13: 189-95
  • 24 Berg JN, Guttmacher AE, Marchuk DA, Porteous MEM. Clinical heterogeneity in hereditary haemorrhagic telangiectasia: are pulmonary arteriovenous malformations more common in families linked to endoglin?. J Med Genet 1996; 33: 256-257
  • 25 Bellón T, Corbí A, Lastres P, Calés C, Cebrián M, Vera S, Cheifetz S, Massagué J, Letarte M, Bernabéu C. Identification and expression of two forms of the human transforming growth factor-β-binding protein endoglin with distinct cytoplasmic regions. Eur J Immunol 1993; 23: 2340-2345
  • 26 Gougos A, Letarte M. Primary structure of endoglin an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 1990; 265: 8361-8364
  • 27 Yamashita H, Ichijo H, Grimsby S, Morén A, Dijke PT, Miyazono K. Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factor-β. J Biol Chem 1995; 269: 1995-2001
  • 28 Lastres P, Bellon T, Cabanas C, Sanchez-Madrid F, Acevedo A, Gougos A, Letarte M, Bemabeu C. Regulated expression on human macrophages of endoglin an Arg-Gly-Asp-containing surface antigen. Eur J Immunol 1992; 22: 393-397
  • 29 ST JacquesS, Cymerman U, Pece N, Letarte M. Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-β binding protein of endothelial and stromal cells. Endocrinology 1994; 134: 2645-2657
  • 30 Gougos A, ST JacquesS, Greaves A, O’Connell PJ, d’Apice AJF, Bühring H-J, Bernabeu C, Mourik JAV, Letarte M. Identification of distinct epitopes of endoglin an RGD-containing glycoprotein of endothelial cells leukemic cells and syncytiotrophoblasts. Int Immunol 1992; 04: 83-92
  • 31 Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M. Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J Biol Chem 1992; 267: 19027-19030
  • 32 Yingling JM, Wang X-F, Bassing CH. Signaling by the transforming growth factor-β receptors. Biochim Biophys Acta 1995; 1242: 115-136
  • 33 Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-β receptor. Nature 1994; 370: 341-347
  • 34 López-Casillas F, Wrana JL, Massagué J. Betaglycan presents ligand to the TGF-β signaling receptor. Cell 1993; 73: 1435-1444
  • 35 Sankar S, Mahooti-Brooks N, Centrella M, McCarthy TL, Madri JA. Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor β2. J Biol Chem 1995; 270: 13567-13572
  • 36 Rodriguez C, Chen F, Weinberg RA, Lodish HF. Cooperative binding of transforming growth factor (TGF)-β2 to the types I and II TGF-β receptors. J Biol Chem 1995; 270: 15919-15922
  • 37 Azuma H, Uno Y, Shigekiyo T, Saito S. Congenital plasminogen deficiency caused by a Ser572to Pro mutation. Blood 1993; 82: 475-480
  • 38 Korf B. Molecular medicine molecular diagnosis (second of two parts). N Engl J Med 1995; 332: 1499-1502
  • 39 Shovlin CL, Hughes JMB. Hereditary hemorrhagic telangiectasia. N Engl J Med 1996; 334: 330-331
  • 40 Kjeldsen AD, Vase P, Oxhøj H. Hereditary hemorrhagic telangiectasia. N Engl J Med 1996; 334: 331
  • 41 Guttmacher AE, Marchuk DA, White RI. Hereditary hemorrhagic telangiectasia. N Engl J Med 1996; 334: 331-332
  • 42 Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757-1763
  • 43 Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS. Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167-4171
  • 44 Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T. Targeted disruption of the mouse transforming growth gene results in multifocal inflammatory disease. Nature 1992; 359: 693-699
  • 45 Letterio JJ, Geiser AG, Kulkami AB, Roche NS, Spom MB, Roberts AB. Maternal rescue of transforming growth factor-β1 null mice. Science 1994; 264: 1936-1938
  • 46 Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction. Nature Genet 1995; 11: 415-421
  • 47 Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howies PN, Ding J, Ferguson MWJ, Doetschman T. Transforming growth factor-β3 is required for secondary palate fusion. Nature Genet 1995; 11: 409-414