Thromb Haemost 1995; 73(04): 706-712
DOI: 10.1055/s-0038-1653845
Original Articles
Vessel Wall
Schattauer GmbH Stuttgart

Augmentation of Vascular Endothelial Barrier Function by Heparin and Low Molecular Weight Heparin

P G Bannon
1   The Applied Research, Heart Research Institute, Sydney, Australia
,
Mi-Jurng Kim
1   The Applied Research, Heart Research Institute, Sydney, Australia
2   Cell Biology Groups, Heart Research Institute, Sydney, Australia
,
R T Dean
2   Cell Biology Groups, Heart Research Institute, Sydney, Australia
,
J Dawes
1   The Applied Research, Heart Research Institute, Sydney, Australia
3   The CRC for Blopharmaceutlcal Research, Darlinghurst, NSW, Australia
› Author Affiliations
Further Information

Publication History

Received 10 May 1994

Accepted after resubmission 13 January 1995

Publication Date:
09 July 2018 (online)

Summary

Glycosaminoglycans (GAGs) are an important component of endothelial barrier function. Early passage human umbilical vein endothelial cells were grown to confluence on transparent micropore filters and barrier function assessed as transendothelial electrical resistance (TEER) and permeability to albumin and sucrose. Unfractionated heparin and the LMW heparin Clexane decreased endothelial permeability to both sucrose and albumin and increased TEER. Chondroitin 6-sulphate also augmented barrier function, but other GAGs had no effect. Interleukin-1 increased permeability to albumin and sucrose and decreased TEER. Although heparin attenuated the effect of IL-1 on TEER and sucrose permeability, it could not restore the barrier to albumin transfer. Denuded endothelial matrix presented a negligible barrier, which was not enhanced by heparin. When sulphation of endogenous GAGs was inhibited by chlorate, barrier function was compromised and was not restored by exogenous heparin. Thus heparin enhances the barrier function of resting endothelium, but cannot completely overcome the increased permeability resulting from exposure to IL-1 or substitute for endogenous GAGs.

 
  • References

  • 1 Shasby S. Endothelial cells grown on permeable membrane supports. J Tiss Cult Meth 1992; 14: 247-252
  • 2 Dull RO, Jo H, Sill H, Hollis TM, Tarbell JM. The effect of varying albumin concentration and hydrostatic pressure on hydraulic conductivity and albumin permeability of cultured endothelial monolayers. Microvasc Res 1991; 41: 390-407
  • 3 Jo H, Dull RO, Hollis TM, Tarbell JM. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol 1991; 260: H1992-H1996
  • 4 Navab M, Hough GP, Van LB, Berliner JA, Fogelman AM. Low density lipoproteins transfer bacterial lipopolysaccharides across endothelial monolayers in a biologically active form. J Clin Invest 1988; 81: 601-605
  • 5 Sill HW, Butler C, Hollis TM, Tarbell JM. Albumin permeability and electrical resistance as means of assessing endothelial monolayer integrity in vitro. J Tiss Cult Meth 1992; 14: 253-258
  • 6 Yamada Y, Furumichi T, Furui H, Yokoi T, Ito T, Yamauchi K, Yokota M, Hayashi H, Saito H. Roles of calcium, cyclic nucleotides and protein kinase C in regulation of endothelial permeability. Arterioscler 1989; 12: 410-418
  • 7 Navab M, Hough GP, Berliner JA, Frank JA, Fogelman AM, Haberland ME, Edwards PA. Rabbit beta-migrating very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance. J Clin Invest 1986; 78: 389-397
  • 8 Renkin EM. Capillary transport of macromolecules: pores and other endothelial pathways. J Appl Physiol 1985; 58: 315-325
  • 9 Simionescu N. Transcytosis and traffic of membranes in the endothelial cell. In: International Cell Biology 1980-1981. Schweiger H. ed Berlin: Springer-Verlag; 1981: 657-672
  • 10 Gato PJ, Ponz F. Use of the paracellular way for the intestinal absorption of sugars. Rev Esp Fisiol 1990; 46: 343-352
  • 11 Malik AB, Lynch JJ, Cooper JA. Endothelial barrier function. J Invest Dermatol 1989; 93: 62S-67S
  • 12 Vernier RL, Klein DJ, Sisson SP, Mahan JD, Oegema TR, Brown DM. Heparin sulfate-rich anionic sites in the human glomerular basement membrane. Decreased concentration in congenital nephrotic syndrome N Eng J Med 1983; 309: 1001-1009
  • 13 Kanwar Y, Linker A, Farquhar M. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparin sulfate) by enzymic digestion. J Cell Biol 1980; 86: 688-693
  • 14 Blajchman MA, Young E, Ofosu FA. Effects of unfractionated heparin, dermatan sulfate and low molecular weight heparin on vessel wall permeability in rabbits. Ann NY Acad Sci 1989; 556: 245-254
  • 15 Maciag T, Cerundolo J, Ilsley S, Kelley PR, Forand R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc Natl Acad Sci USA 1979; 76: 5674-5678
  • 16 Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and imunologic criteria J Clin Invest 1973; 52: 2745-2756
  • 17 Humphries DE, Silbert JE. Chlorate: a reversible inhibitor of proteoglycan sulfation. Biochem Biophys Res Commun 1988; 154: 365-371
  • 18 Albelda SM, Sampson PM, Haselton FR, McNiff JM, Mueller SN, Williams SK, Fishman AP, Levine EM. Permeability characteristics of cultured endothelial cell monolayers. J Appl Physiol 1988; 64: 308-322
  • 19 Richards DM, Dean RT, Jessup W. Membrane proteins are critical targets in free radical mediated cytolysis. Biochim Biophys Acta 1988; 946: 281-288
  • 20 Olesen SP, Crone C. Electrical resistance of muscle capillary endothelium. BiophysJ 1983; 42: 31-41
  • 21 Hodson SA, Wigham CG. Paracellular ionic and transcellular water diffusions across rabbit corneal endothelium. J Physiol Lond 1987; 385: 89-96
  • 22 Peterson MW, Gruenhaupt D. Protamine increases the permeability of cultured epithelial monolayers. J Appl Physiol 1990; 68: 220-227
  • 23 Shasby DM, Shasby SS. Effects of calcium on transendothelial albumin transfer and electrical resistance. J Appl Physiol 1986; 60: 71-79
  • 24 Marmorstein AD, Mortell KH, Ratcliffe DR, Cramer EB. Epithelial permeability factor: a serum protein that condenses actin and opens tight junctions. Am J Physiol 1992; 262: C1403-C1410
  • 25 Antohe F, Dobrila L, Heltianu C, Simionescu N, Simionescu M. Albuminbinding proteins function in the receptor-mediated binding and transcytosis of albumin across cultured endothelial cells. Eur J Cell Biol 1993; 60: 268-275
  • 26 Ghitescu L, Bendayan M. Transendothelial transport of serum albumin: a quantitative immunocytochemical study. J Cell Biol 1992; 117: 745-755
  • 27 Michel C. The transport of albumin: a critique of the vesicular system in transendothelial transport. Am Rev Respir Dis 1992; 146: S32-S36
  • 28 Folkman J, Ingber D. Angiogenesis: regulatory role of heparin and related molecules. In: Heparin: Chemical and Biological Properties.Clinical Applications. Lane DA, Lindahl U. eds London, Melbourne, Auckland: Edward Arnold; 1989: 317-333
  • 29 Minter A, Dawes J, Chesterman C. Effects of heparin and endothelial cell growth supplement on haemostatic functions of vascular endothelium. Thromb Haemost 1992; 67: 718-723
  • 30 Hiebert L. Dextran sulfates and heparin protect cultured endothelial cells from free radical injury. Thromb Haemost 1993; 69: 642
  • 31 Hobson R, Wright JG, Fox D, Kerr JC. Heparinization reduces endothelial permeability and hydrogen ion accumulation in a canine skeletal muscle ischemia-reperfusion model. J Vase Surg 1988; 7: 585-591
  • 32 Royall JA. et al Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability. Am J Physiol 1989; 257: L399-L410
  • 33 Campbell W, Ding X, Goldblum S. Interleukin-1 alpha and -beta augment pulmonary artery transendothelial albumin flux in vitro. Am J Physiol 1992; 268: L128-L136
  • 34 Nygaard SD, Ganz T, Peterson MW. Defensins reduce the barrier integrity of a cultured epithelial monolayer without cytotoxicity. Am J Respir Cell Mol Biol 1993; 8: 193-200
  • 35 Ramasamy S, Boissoneault G, Like D, Hennig B. Proteoglycans and endothelial barrier function: effect of linoleic acid exposure to porcine pulmonary artery endothelial cells. Atherosclerosis 1993; 103: 279-290
  • 36 Sunnergren KP, Fairman RP, deBlois GG, Glauser FL. Effects of protamine, heparinase, and hyaluronidase on endothelial permeability and surface charge. J Appl Physiol 1987; 63: 1987-1992
  • 37 Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Protamine sulfate induces enhanced peritoneal permeability to proteins. Nephron 1991; 57: 45-51
  • 38 Gambaro G, Cavazzana AD, Luzi P, Piccoli A, Borsatti A, Crepaldi G, Marchi E, Venturini AP, Baggio B. Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. Kidney Int 1992; 42: 285-291
  • 39 Yu M, Martin R, Jain S, Chen L, Segel I. Rat liver ATP-sulfurylase: purification, kinetic characterization and interaction with arsenate, selenate, phosphate and other inorganic oxyanions. Arch Biochem Biophys 1989; 269: 156-174
  • 40 Brauer PR, Keller KM, Keller JM. Concurrent reduction in the sulfation of heparan sulfate and basement membrane assembly in a cell model system. Development 1990; 110: 805-813
  • 41 Garcia JG, Siflinger-Birnboim A, Bizios R, Del VecchioP, Fenton JW, Malik AB. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol 1986; 128: 96-104
  • 42 Siflinger-Birnboim A, Del VecchioP, Cooper JA, Blumenstock FA, Shepard JM, Malik AB. Molecular sieving characteristics of the cultured endothelial monolayers. J Cell Physiol 1987; 132: 111-117
  • 43 Territo M, Berliner JA, Fogelman AM. Effect of monocyte migration on low density lipoprotein transport across aortic endothelial cell monolayers. J Clin Invest 1984; 74: 2279-2284
  • 44 Furie M, Cramer E, Naprstek B, Silverstein S. Cultured endothelial monolayers that restrict the transendothelial passage of macromolecules and electrical current. J Cell Biol 1984; 98: 1033-1041
  • 45 Dawes J. Measurement of the affinities of heparins, naturally occurring glycosaminoglycans, and other sulfated polymers for antithrombin III and thrombin. Anal Biochem 1988; 174: 177-186