Thromb Haemost 1995; 74(04): 1169-1174
DOI: 10.1055/s-0038-1649898
Original Article
Vessel Wall
Schattauer GmbH Stuttgart

Minimum Fragments of the Heparin Molecule Able to Produce the Accumulation and Change of the Sulfation Pattern of an Antithrombotic Heparan Sulfate from Endothelial Cells

Maria A S Pinhal
The Departamento de Bloquímlca Escola Paulista de Medicina, Sao Paulo, Brazil
,
Isabel A N Santos
The Departamento de Bloquímlca Escola Paulista de Medicina, Sao Paulo, Brazil
,
Irani F Silva
The Departamento de Bloquímlca Escola Paulista de Medicina, Sao Paulo, Brazil
,
Carl P Dietrich
The Departamento de Bloquímlca Escola Paulista de Medicina, Sao Paulo, Brazil
,
Helena B Nader
The Departamento de Bloquímlca Escola Paulista de Medicina, Sao Paulo, Brazil
› Author Affiliations
Further Information

Publication History

Received 27 January 1995

Accepted after resubmission 23 June 1995

Publication Date:
09 July 2018 (online)

Summary

Heparin and low molecular weight heparins stimulate two to three fold the accumulation of an antithrombotic heparan sulfate secreted by endothelial cells in culture. This led us to search for the minimum structural requirements of the heparin molecule able to elicit the enhancement of the heparan sulfate. Fragments were prepared from heparin by degradation with bacterial heparinase and heparitinases. A heparin pentasulfated tetrasaccharide was shown to be the minimum structural sequence able to enhance two to three fold the secretion of heparan sulfate by endothelial cells. The stimulation is specific for the endothelial cell, is concentration dependent and the effect is already noticed afterone hour of exposure of the cells to heparinand the tetrasaccharide. Degradation of the [35S]-heparan sulfate synthesized in the presence of heparin or the tetrasaccharide has shown a higher degree of sulfation of its iduronic acid residues.

 
  • References

  • 1 Dietrich CP, Montes de Oca H. Production of heparin-related mucopolysaccharides by mammalian cells in culture. Proc Soc Exptl Biol Med 1970; 134: 955-962
  • 2 Dietrich CP, Paiva JF, Moraes CT, Takahashi HK, Porcionatto MA, Nader HB. Isolation and characterization of a heparin with high anticoagulant activity from Anomalocardia brasiliana. Biochim Biophys Acta 1985; 843: 1-7
  • 3 Kraemer PM. Heparan sulfates of cultured cells. I- Membrane-associated cell sap species in Chinese hamster cells Biochemistry 1971; 10: 1437-1445
  • 4 Nader HB, Ferreira TM P C, Paiva JF, Medeiros MG L, Jerônimo SM B, Paiva VM P, Dietrich CP. Isolation and structural studies of heparan sulfates and chondroitin sulfates from three species of molluscs. J Biol Chem 1984; 259: 1431-1435
  • 5 Roden L. Structure and metabolism of connective tissue proteoglycans. In: The Biochemistry of Glycoproteins and Proteoglycans. Lennarz WJ. ed New York: Plenum Press; 1980. pp 267-271
  • 6 Dietrich CP, Nader HB, Straus AH. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem Biophys Res Commun 1983; 111: 865-871
  • 7 Nader HB, Dietrich CP, Buonassisi V, Colburn P. Heparin sequences in the heparan sulfate chains of an endothelial cell proteoglycan. Proc Natl Acad Sci USA 1987; 84: 3565-3569
  • 8 Colburn P, Buonassisi V. Anti-clotting activity of endothelial cell cultures and heparan sulfate proteoglycans. Biochem Biophys Res Commun 1982; 104: 220-227
  • 9 Nader HB, Buonassisi V, Colburn P, Dietrich CP. Heparin stimulates the synthesis and modifies the sulfation pattern of heparan sulfate proteoglycan from endothelial cells. J Cell Physiol 1989; 140: 305-310
  • 10 Nader HB, Toma L, Pinhal MA S, Buonassisi V, Colburn P, Dietrich CP. The effect of heparin and dextran sulfate on the synthesis and structure of heparan sulfatee from cultured endothelial cells. Sem Thromb Haemost 1991; 17: 47-56
  • 11 Nader HB, Dietrich CP, Pinhal MA S, Walenga J, Jeske W, Hoppensteadt D, Fareed J. Effect of LMW heparins and related glycosaminoglycans on the synthesis of heparan sulfate by endothelial cells. Blood 1992; 80: 319 a
  • 12 Dietrich CP, Silva ME, Michelacci YM. Sequential degradation of heparin in Flacvobacterium heparinum. Purification and properties of five enzymes involved in heparin degradation J Biol Chem 1973; 248: 6409-6415
  • 13 Silva ME, Dietrich CP. The structure of heparin. Characterization of the products formed from heparin by the action of a heparinase and a heparitinase II from Flavobacterium heparinum J Biol Chem 1975; 250: 6841-6846
  • 14 Nader HB, Porcionatto MA, Moraes CT, Dietrich CP. Purification and substrate specificity of heparinase, heparitinase I and heparitinase II from Flavobacterium heparinum. J Biol Chem 1990; 265: 6807-6813
  • 15 Buonassisi V, Venter JC. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc Natl Acad Sci USA 1976; 73: 1612-1616
  • 16 Buonassisi V, Colburn P. Hormone and surface receptors in vascular endothelium. Adv Microcirc 1980; 9: 76-94
  • 17 Perlin AS, Mackie DM, Dietrich CP. Evidence for a (l-4)-linked 4-0-(a-L-idopyranosyluronic acid 2-sulfate)-(2-deoxy-2-sulfoamino-D-glucopyrano- syl 6-sulfate) sequence in heparin. Carbohyd Res 1971; 18: 185-194
  • 18 Ragazzi M, Ferro DR, Provasoli A, Pumilia P, Cassinari A, Torri G, Guerrini M, Casu B, Nader HB, Dietrich CP. Conformation of the unsaturated uronic acid residues of glycosaminoglycan disaccharides J Carbohyd Chem 1993; 12: 523-535
  • 19 Spector T. Refinement of the Coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein Anal Biochem 1978; 86: 142-146
  • 20 Dietrich CP, Tersariol IL S, Silva RG, Bianchini P, Nader HB. Dependence of the C-6 sulfate of the glucosamine moiety and 1-4 glycosidic linkage of heparin disaccharides for production of hemorrhage. Reversal of the antihemostatic activity of heparin and their fragments by ATP and myosin Sem Thromb Haemost 1991; 17: 65-73