Thromb Haemost 1992; 67(03): 341-345
DOI: 10.1055/s-0038-1648444
Original Articles
Schattauer GmbH Stuttgart

Toward Gene Therapy in Haemophilia A: Retrovirus-Mediated Transfer of a Factor VIII Gene into Murine Haematopoietic Progenitor Cells

R C Hoeben
1   The Laboratory of Molecular Carcinogenesis, Department of Medical Biochemistry, University of Leiden, Rijswijk, The Netherlands
,
M P W Einerhand
2   The Department of Gene Therapy, Institute for Applied Radiobiology and Immunology-TNO, Rijswijk, The Netherlands
,
E Briët
3   The Department of Haematology, University of Leiden, Leiden, The Netherlands
,
H van Ormondt
1   The Laboratory of Molecular Carcinogenesis, Department of Medical Biochemistry, University of Leiden, Rijswijk, The Netherlands
,
D Valerio
2   The Department of Gene Therapy, Institute for Applied Radiobiology and Immunology-TNO, Rijswijk, The Netherlands
,
A J van der Eb
1   The Laboratory of Molecular Carcinogenesis, Department of Medical Biochemistry, University of Leiden, Rijswijk, The Netherlands
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 03. Mai 1991

Accepted after revision 19. September 1991

Publikationsdatum:
03. Juli 2018 (online)

Summary

To study and evaluate the potential of the haematopoietic system as a target for gene therapy in haemophilia A, we have infected murine bone-marrow cells with a recombinant retrovirus encoding blood-coagulation factor VIII and the bacterial enzyme neomycin-phosphotransferase. After transplantation of the infected bone marrow into lethally irradiated mice, the presence of intact vector could be demonstrated in DNA isolated from individual haematopoietic progenitor-cell-derived spleen colonies. About 8% of the spleen colonies were shown to contain the intact vector. Selection for resistance to the neomycin analogue G418 prior to transplantation specifically killed the uninfected bone-marrow cells and, as a result, over 90% of the spleen colonies contained the factor VIII vector. However, expression of factor VIII in vivo, either at the RNA or at the protein level could not be demonstrated. From these data we conclude that: 1) retroviral vectors can be used to transfer factor-VIII cDNA into haematopoietic progenitor cells; 2) the vector sequences are expressed immediately after integration; and 3) transcription of the vector is repressed in the progenitor-cell-derived cells.

 
  • References

  • 1 Smit C, Rosendaal FR, Yarekamp I, Bröcker-Vriends A, Van Dijck H, Suurmeijer TPBM, Briët E. Physical condition, longevity and social performance of Dutch haemophiliacs, 1973-1985. Br Med J 1989; 298: 235-238
  • 2 White II GC, McMillan CW, Kingdon HS, Shoemaker CB. Use of Recombinant antihemophilic factor in the treatment of two patients with classic hemophilia. N Engl J Med 1989; 320: 166-170
  • 3 Schwartz RS, Abildgaard CF, Aledort LM, Arkin S, Bloom AL, Brackmann HH, Brettler DB, Fukui H, Hilgartner MW, Inwood MJ, Kasper CK, Kernoff PBA, Levine PH, Lushner JM, Mannucci PM, Scharrer I, MacKenzie MA, Pancham N, Kuo HS, Allred RU. the recombinant Factor VIII Study Group. Human Recombinant-derived antihemophilic factor (factor VIII) in the treatment of hemophilia A. N Engl J Med 1990; 323: 1800-1805
  • 4 Friedmann T. Progress toward human gene therapy. Science 1989; 244: 1275-1281
  • 5 Brettler DB, Levine PH. Factor concentrates for treatment of hemophilia: which one to choose?. Blood 1989; 73: 2067-2073
  • 6 Anderson WF. Prospects for human gene therapy. Science 1984; 226: 401-409
  • 7 Miller AD. Progress toward human gene therapy. Blood 1990; 76: 271-278
  • 8 Zelechowska MG, Van Mourik JA, Brodniewicz-Proba T. Ultrastructural localization of factor VIII procoagulant antigen in human liver hepatocytes. Nature 1985; 317: 729-730
  • 9 Wion KL, Kelly D, Summerfield JA, Tuddenham EGD, Lawn RM. Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature 1985; 317: 726-728
  • 10 White II GC, Shoemaker CB. Factor VIII gene and hemophilia A. Blood 1989; 73: 1-12
  • 11 Kaufman RJ, Wasley LC, Domer AJ. Synthesis, processing, and secretion of recombinant factor VIII expressed in mammalian cells. J Biol Chem 1988; 263: 6352-6362
  • 12 Hoeben RC, Van der Jagt RCM, Schoute F, Van Tilburg N, Verbeet MPh, Briet E, Van Ormondt H, Van der Eb AJ. Expression of functional factor VIII in primary human skin fibroblasts after retrovirus-mediated gene transfer. J Biol Chem 1990; 265: 7318-7323
  • 13 Valerio D. Retrovirus vectors for gene therapy procedures. In: Transgenic Mice in Biology and Medicin. Grosveld F, Kollias G. (eds) Academic Press; London: 1991. in press
  • 14 Valerio D, Einerhand MPW, Wamsley PM, Bakx TA, Li CL, Verma IM. Retrovirus-mediated gene transfer into embryonal carcinoma and hemopoietic stem cells: excpression from a hybrid long terminal repeat. Gene 1989; 84: 419-427
  • 15 Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213-222
  • 16 Leyte A, Mertens K, Distel B, Evers RF, De Keyser-Nellen MJM, Groenen-Van Doornen MMCL, De Bruin J, Pannekoek H, Van Mourik JA, Verbeet MPh. Inhibition of human coagulation factor VIII by monoclonal antibodies. Biochem J 1989; 263: 187-194
  • 17 Auffray C, Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor DNA. Eur J Biochem 1980; 107: 303-314
  • 18 Laird-Offringa IA, Elfferich P, Knaken HJ, De Ruiter J, Van der EbAJ. Analysis of polyadenylation site usage of the c-myc oncogene. Nucleic Acids Res 1989; 17: 6499-6514
  • 19 Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL, Delwart E, Tuddenham EGD, Vehar GA, Lawn RM. Expression of active human factor VIII from recombinant DNA clones. Nature 1984; 312: 330-337
  • 20 Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd. edn. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY: 1989
  • 21 Van Beusechem VW, Kulker A, Einerhand MPW, Bakx TA, Van der EbAJ, Van Bekkum DW, Valerio D. Expression of human adenosine deaminase in mice transplanted with hemopoietic stem cells with amphotropic retroviruses. J Exp Med 1990; 172: 729-736
  • 22 Bender MA, Gelinas RE, Miller AD. Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J Virol 1987; 61: 1426-1434
  • 23 Armentano D, Yu SF, Kantoff PW, Von Rüden T, Anderson WF, Gilboa E. Effect of internal viral sequences on the utility of retroviral vectors. J Virol 1987; 61: 1647-1650
  • 24 Apperley JF, Williams DA. Gene therapy: Current status and future directions. Br J Haematol 1990; 75: 148-155
  • 25 Guild BC, Finer MH, Housman DE, Mulligan RC. Development of retro virus vectors useful for expressing genes in cultured murine embryonal cells and hermatopoietic cells in vivo. J Virol 1988; 62: 3795-3801
  • 26 Mclvor RS, Johnson MJ, Miller AD, Pitts S, Williams SR, Valerio D, Martin Jr DW, Verma IM. Human purine nucleoside phosphorylase and adenosine deaminase: gene transfer into cultured cells and murine hematopoietic stem cells by using recombinant amphotropic retroviruses. Mol Cell Biol 1987; 7: 838-846
  • 27 Franz T, Hilberg F, Selinger B, Stocking B, Ostertag W. Retroviral mutants efficiently expressed in embryonal carcinoma cells. Proc Natl Acad Sei USA 1986; 83: 3292-3296
  • 28 Laker C, Stocking C, Bergholtz U, Hess N, De Lamarter JF, Ostertag W. Autocrine stimulation after transfer of granulocyte/macrophage colony-stimulating factor gene and autocrine growth are distinct steps in the oncogenic pathway. Proc Natl Acad Sei USA 1987; 84: 8458-8462
  • 29 Bordignon C, Yu S-F, Smith CA, Hatzopoulos P, Ungers GE, Keever CA, O’Reilly RJ, Gilboa E. Retroviral vector-mediated high-efficiency expression of adenosine deaminase (ADA) in hematopoietic long-term cultures of ADA-deficient marrow cells. Proc Natl Acad Sei USA 1989; 86: 6748-6752
  • 30 Hock RA, Miller AD, Osborne WRA. Expression of human adenosine deaminase from various strong promoters after gene transfer into human hematopoietic cell lines. Blood 1989; 74: 876-881
  • 31 Lim B, Apperley JE, Orkin SH, Williams DA. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic-stem cells. Proc Natl Acad Sei USA 1989; 86: 8892-8896
  • 32 Anson DS, Hock RA, Austen D, Smith KJ, Brownlee GG, Verma IM, Miller AD. Towards gene therapy for hemophilia B. Mol Biol Med 1987; 4: 11-20
  • 33 Armentano D, Thompson AR, Darlington G, Woo SLC. Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: Potential for gene therapy of hemophilia B. Proc Natl Acad Sei USA 1990; 87: 6141-6145
  • 34 StLouis D, Verma IM. An alternative approach to somatic cell gene therapy. Proc Natl Acad Sei USA 1988; 85: 3150-3154
  • 35 Palmer TD, Thompson AR, Miller AD. Production of human factor IX in animals by genetically modified skin fibroblasts: Potential therapy for hemophilia B. Blood 1989; 73: 438-445
  • 36 Palmer TD, Rosman GJ, Osborne WRA, Miller AD. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sei USA 1991; 88: 1330-1334
  • 37 Hoeben RC, Migchielsen AAJ, Van der Jagt RCM, Van Ormondt H, Van der EbAJ. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines’is associated with méthylation and dependent on its chromosomal position. J Virol 1991; 65: 904-912
  • 38 Scharfmann R, Axelrod JH, Verma IM. Long-term expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc Natl Acad Sei USA 1991; 88: 4626-4630