Thromb Haemost 1992; 67(01): 066-069
DOI: 10.1055/s-0038-1648382
Original Articles
Schattauer GmbH Stuttgart

Haplotype Analysis of Identical Factor IX Mutants Using PCR

Peter M Green
1   The Paediatric Research Unit, Division of Medical & Molecular Genetics, Guy’s Tower, London Bridge, United Kingdom
,
A Jane Montandon
1   The Paediatric Research Unit, Division of Medical & Molecular Genetics, Guy’s Tower, London Bridge, United Kingdom
,
Rolf Ljung
2   The Department for Coagulation Disorders, University of Lund, General Hospital, Malmö, Sweden
,
lnga Marie Nilsson
2   The Department for Coagulation Disorders, University of Lund, General Hospital, Malmö, Sweden
,
Francesco Giannelli
1   The Paediatric Research Unit, Division of Medical & Molecular Genetics, Guy’s Tower, London Bridge, United Kingdom
› Author Affiliations
Further Information

Publication History

Received 19 March 1991

Accepted after revision 15 August 1991

Publication Date:
02 July 2018 (online)

Summary

We have detected the mutations in the factor IX genes from all of the haemophilia B patients registered at Malmo haemophilia centre (45) and are currently examining the entire UK haemophilia B population. From these studies we have found 13 base substitutions which have recurred in 1-6 other, presumably unrelated, patients. In order to determine the minimum number of independent repeats of each mutation we have used PCR to examine the five factor IX polymorphisms forming the most informative combinations and we have characterised the haplotype of each patient. Patients with different haplotypes are assumed to be unrelated and thus to carry independent mutations. All but one of the 13 mutations occur in at least 2 haplotypes thus pinpointing 12 mutational hotspots and mutations that can be clearly considered detrimental. Two of the 13 substitutions occur at non-CpG sites.

 
  • References

  • 1 Ferrari N, Rizza CA. Estimation of genetic risks of carriership for possible carriers of Christmas disease (haemophilia B). Brazilian J Genet 1986; 9: 87-99
  • 2 Giannelli F. Factor IX. In: The Molecular Biology of Coagulation. Tuddenham EGD. (ed). Bailliere’s Clinical Haematology. Vol. 2 1989; pp 821-848
  • 3 Camerino G, Grzeschik KH, Jaye M, De La Salle H, Tolstoshev P, Lecocq J-P, Heilig R, Mandel JL. Regional localization on the human X-chromosome and polymorphism of the coagulation factor IX gene (haemophilia B locus). Proc Natl Acad Sci USA 1984; 81: 498-502
  • 4 Winship PR, Anson DS, Rizza CR, Brownlee GG. Carrier detection in haemophilia B using two further intragenic restriction fragment length polymorphisms. Nucl Acids Res 1984; 12: 8861-8872
  • 5 Camerino G, Oberle I, Drayna D, Mandel JL. A new MspI restriction fragment length polymorphism in the hemophilia B locus. Hum Genet 1985; 71: 79-81
  • 6 McGraw RA, Davis LM, Noyes CM, Lundblad RL, Roberts HR, Graham JB, Stafford DW. Evidence for a prevalent dimorphism in the activation peptide of human coagulation factor IX. Proc Natl Acad Sci USA 1985; 82: 2847-2851
  • 7 Winship PR, Brownlee GG. Diagnosis of haemophilia B carriers using intragenic oligonucleotide probes (Letter). Lancet 1986; ii: 218-219
  • 8 Hay CW, Robertson KA, Yong SL, Thompson AR, Growe GH, MacGillivray RTA. Use of a BamHI polymorphism in the factor IX gene for the determination of hemophilia B carrier status. Blood 1986; 67: 1508-1511
  • 9 Winship PR, Rees DJG, Alkan M. Detection of polymorphisms at cytosine phosphoguanidine dinucleotides and diagnosis of haemophilia B carriers. Lancet 1989; (i): 631-634
  • 10 Green PM, Bentley DR, Mibashan RS, Nilsson IM, Giannelli F. Molecular pathology of haemophilia B. EMBO J 1989; 8: 1067-1072
  • 11 Green PM, Montandon AJ, Ljung R, Bentley DR, Nilsson IM, Kling S, Giannelli F. Haemophilia B mutations in a complete Swedish population sample. A test of new strategy for the genetic counselling of diseases with high mutational heterogeneity. Br J Haematol 1991; 78: 390-397
  • 12 Montandon AJ, Green PM, Giannelli F, Bentley DR. Direct detection of point mutations by mismatch analysis: application to haemophilia B. Nucl Acids Res 1989; 17: 3347-3358
  • 13 Giannelli F, Green PM, High KA, Lozier JN, Lillicrap DP, Ludwig M, Olek K, Reitsma PH, Goossens M, Yoshioka A, Sommer S, Brownlee GG. Haemophilia B: database of point mutations and short additions and deletions. Nucl Acids Res 1990; 18: 4053-4059
  • 14 Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acids Res 1988; 16: 1215
  • 15 Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239: 487-494
  • 16 Yoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985; 24: 3736-3750
  • 17 Tsang TC, Bentley DR, Nilsson IM, Giannelli F. The use of DNA amplification for genetic counselling related diagnosis in haemophilia B. Thromb Haemostas 1989; 61: 343-347
  • 18 Green PM, Montandon AJ, Bentley DR, Ljung R, Nilsson IM, Giannelli F. The incidence and distribution of CpG —» TpG transitions in the coagulation factor IX gene. A fresh look at CpG mutational hotspots. Nucl Acids Res 1990; 18: 3227-3231
  • 19 Montandon AJ, Green PM, Bentley DR, Ljung R, Nilsson IM, Giannelli F. A new strategy for carrier and prenatal diagnosis and molecular studies in haemophilia B. In: Biotechnology of Plasma Proteins. Albertini A, Lenfonrt CL, Mannucci PM, Sixma JJ. (eds). Curr Stud Hematol Blood Tranf. Karger, Basel 1991; No (58) pp 88-93
  • 20 Thompson AR, Bajaj SP, Chen SH, MacGillivray RTA. “Founder” effect in different families with haemophilia B mutation. Lancet 1990; (i): 418
  • 21 Bottema CDK, Koeberl DD, Ketterling RP, Bowie EJW, Taylor SAM, Lillicrap D, Shapiro A, Gilchrist G, Sommer SS. A past mutation at Isoleucine 397 is now a common cause of moderate/mild haemophilia B. Br J Haematol 1990; 75: 212-216