Thromb Haemost 1988; 60(03): 399-406
DOI: 10.1055/s-0038-1646979
Original Article
Schattauer GmbH Stuttgart

Modulation of Heparin Cofactor II Function by S Protein (Vitronectin) and Formation of a Ternary S Protein-Thrombin-Heparin Cofactor II Complex

Klaus T Preissner
Hôpital Purpan, Toulouse, France
,
Pierre Sié
The Clinical Research Unit for Blood Coagulation and Thrombosis of the Max-Planck-Gesellschaft, Justus-Liebig-Universität Gießen, FRG and the Hemostasis Laboratory
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 22. Februar 1988

Accepted after revision 18. Juli 1988

Publikationsdatum:
30. Juni 2018 (online)

Zoom Image

Summary

The complement inhibitor S protein, which is identical to the adhesive protein vitronectin, functions as heparin-neutralizing factor by protecting thrombin as well as factor Xa against fast inactivation by antithrombin III. The interference of S protein with glycosaminoglycan-catalyzed inhibition of thrombin by heparin cofactor II was investigated in these studies. S protein significantly counteracted the anticoagulant activity of heparin and pentosan polysulfate but not of dermatan sulfate. In the presence of 0.3 μg/ml heparin, 0.5 μg/ml pentosan polysulfate, or 2 μg/ml dermatan sulfate, S protein induced a concentrationdependent reduction of the inhibition rate of thrombin by heparin cofactor II. This resulted in a decrease of the apparent pseudo first-order rate constants by about 17-fold (heparin), or about 7-fold (pentosan polysulfate), whereas no neutralization of dermatan sulfate was demonstrable at a physiological ratio of S protein to heparin cofactor II. Exposure of the glycosaminoglycan-binding region of S protein by reduction and carboxymethylation of the protein increased the neutralizing activity of S protein towards heparin and pentosan polysulfate. The results of these functional experiments correlated well with the demonstration of direct binding of S protein to both polysaccharides but not to dermatan sulfate. While reduced/carboxymethylated S protein remained also ineffective in neutralizing other dermatan sulfate compounds with varying degree of sulfation, a synthetic highly basic tridecapeptide, representing a portion of the glycosaminoglycan-binding domain of S protein, counteracted their anticoagulant activity. Independent on the polysaccharide used, S protein was found incorporated within a ternary complex with thrombin and heparin cofactor II during the inhibition reaction as judged by crossed immunoelectrophoresis, ultracentrifugation as well as ELISA analysis, emphazising the function of S protein as scavenger protein for enzyme-inhibitor complexes of the coagulation system. These findings demonstrate the role of S protein as effective neutralising plasma protein of the anticoagulant activity of various glycosaminoglycans also with respect to heparin cofactor II. Although the glycosaminoglycan-binding domain of S protein readily neutralized different dermatan sulfate compounds, physiological modulation of heparin cofactor-II-dependent inhibition of thrombin by native S protein appears to be restricted to the vascular compartments, where other glycosaminoglycans than dermatan sulfate appear to be operative.