J Neurol Surg A Cent Eur Neurosurg 2018; 79(06): 496-501
DOI: 10.1055/s-0038-1642008
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Anterior Cervical Fusion with Stand-alone Trabecular Metal Cages to Treat Cervical Myelopathy Caused by Degenerative Disk Disease. Observations in 88 Cases with Minimum 12-month Follow-up

Luciano Mastronardi
1   Department of Neurosurgery, San Filippo Neri Hospital of Roma, via Martinotti 20 Roma, Italy, Roma 00135, Italy
,
Raffaelino Roperto
1   Department of Neurosurgery, San Filippo Neri Hospital of Roma, via Martinotti 20 Roma, Italy, Roma 00135, Italy
,
Guglielmo Cacciotti
1   Department of Neurosurgery, San Filippo Neri Hospital of Roma, via Martinotti 20 Roma, Italy, Roma 00135, Italy
,
Francesco Calvosa
1   Department of Neurosurgery, San Filippo Neri Hospital of Roma, via Martinotti 20 Roma, Italy, Roma 00135, Italy
› Author Affiliations
Further Information

Publication History

04 December 2017

12 March 2018

Publication Date:
14 June 2018 (online)

Abstract

Background Anterior cervical fusion (ACF) with autologous bone was reported > 50 years ago. The continuous development of materials with elastic properties close to that of the cortical bone improves induction of osteogenesis and simplifies the technique of interbody fusion. To determine the safety and efficiency of stand-alone trabecular metal (TM) (or porous tantalum) cages for ACF, we performed a retrospective analysis of 88 consecutive patients with one-level or two-level degenerative disk disease (DDD) causing cervical myelopathy treated by interbody fusion with stand-alone TM cages.

Materials and Methods During a 65-month period, 88 consecutive patients had ACF at 105 levels between C3 and C7. All surgeries involved one- or two-segmental DDD producing mild or severe cervical spine myelopathy, in 31 patients (35.2%), associated with unilateral or bilateral radiculopathy. We implanted all disk spaces with unfilled TM trapezoidal cages (Zimmer Biomet Spine, Broomfield, Colorado, United States).

Results At a mean follow-up of 31 months (range: 12–65 months), 95.4% of patients had a good to excellent outcome, with subjective and objective improvement of myelopathy; the result was fair in two and poor in two other patients. Radicular pain and/or any deficits disappeared in 84 patients (95.4%) complaining of preoperative myeloradiculopathy. The fusion rate was 68.2% at 6 months and 100% at 1 year. Device fragmentation was never observed. In two cases, a second operation with removal of TM cages, corpectomy, expansion cages, and plating was necessary.

Conclusions TM cages appear to be safe and efficient for ACF in DDD patients with myelopathy. To confirm our preliminary impressions, larger studies with long-term follow-up are necessary.

 
  • References

  • 1 Al-Mefty O, Harkey LH, Middleton TH, Smith RR, Fox JL. Myelopathic cervical spondylotic lesions demonstrated by magnetic resonance imaging. J Neurosurg 1988; 68 (02) 217-222
  • 2 Benzel EC, Lancon J, Kesterson L, Hadden T. Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J Spinal Disord 1991; 4 (03) 286-295
  • 3 Black J, Hastings GW. Handbook of Biomaterials Properties. London, UK: Chapman and Hall; 1998
  • 4 Brantigan JW, Steffee AD, Geiger JM. A carbon fiber implant to aid interbody lumbar fusion. Mechanical testing. Spine 1991; 16 (6, Suppl): S277-S282
  • 5 Brooke NS, Rorke AW, King AT, Gullan RW. Preliminary experience of carbon fibre cage prostheses for treatment of cervical spine disorders. Br J Neurosurg 1997; 11 (03) 221-227
  • 6 Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop 2002; 31 (04) 216-217
  • 7 Dowd GC, Wirth FP. Anterior cervical discectomy: is fusion necessary?. J Neurosurg 1999; 90 (1, Suppl): 8-12
  • 8 Kaplan RB. , inventor. Open cell tantalum structures for cancellous bone implants and cell and tissue structures. US patent 5,282,861. 1994
  • 9 Kock W, Paschen P. Tantalum: processing, properties and applications. J Miner Met Mater Soc 1989; 41: 33-39
  • 10 Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 2006; 27 (27) 4671-4681
  • 11 Lin CN, Wu YC, Wang NP, Howng SL. Preliminary experience with anterior interbody titanium cage fusion for treatment of cervical disc disease. Kaohsiung J Med Sci 2003; 19 (05) 208-216
  • 12 Madawi AA, Powell M, Crockard HA. Biocompatible osteoconductive polymer versus iliac graft. A prospective comparative study for the evaluation of fusion pattern after anterior cervical discectomy. Spine 1996; 21 (18) 2123-2129 ; discussion 2129–2130
  • 13 Majd ME, Vadhva M, Holt RT. Anterior cervical reconstruction using titanium cages with anterior plating. Spine 1999; 24 (15) 1604-1610
  • 14 Matge G. Anterior interbody fusion with the BAK-cage in cervical spondylosis. Acta Neurochir (Wien) 1998; 140 (01) 1-8
  • 15 Mochida K, Komori H, Okawa A, Muneta T, Haro H, Shinomiya K. Regression of cervical disc herniation observed on magnetic resonance images. Spine 1998; 23 (09) 990-995 ; discussion 996–997
  • 16 Profeta G, de Falco R, Ianniciello G, Profeta L, Cigliano A, Raja AI. Preliminary experience with anterior cervical microdiscectomy and interbody titanium cage fusion (Novus CT-Ti) in patients with cervical disc disease. Surg Neurol 2000; 53 (05) 417-426
  • 17 Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical application of polymer-composite materials: a review. Composites Sci Tech 2001; 61 (09) 1189-1224
  • 18 Saal JS, Saal JA, Yurth EF. Nonoperative management of herniated cervical intervertebral disc with radiculopathy. Spine 1996; 21 (16) 1877-1883
  • 19 Savolainen S, Rinne J, Hernesniemi J. A prospective randomized study of anterior single-level cervical disc operations with long-term follow-up: surgical fusion is unnecessary. Neurosurgery 1998; 43 (01) 51-55
  • 20 Sonntag VK, Klara P. Controversy in spine care. Is fusion necessary after anterior cervical discectomy?. Spine 1996; 21 (09) 1111-1113
  • 21 Thorell W, Cooper J, Hellbusch L, Leibrock L. The long-term clinical outcome of patients undergoing anterior cervical discectomy with and without intervertebral bone graft placement. Neurosurgery 1998; 43 (02) 268-273 ; discussion 273–274
  • 22 Chen CJ, Lyu RK, Lee ST, Wong YC, Wang LJ. Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology 2001; 221 (03) 789-794
  • 23 Faiss JH, Schroth G, Grodd W, Koenig E, Will B, Thron A. Central spinal cord lesions in stenosis of the cervical canal. Neuroradiology 1990; 32 (02) 117-123
  • 24 Fujiwara K, Yonenobu K, Ebara S, Yamashita K, Ono K. The prognosis of surgery for cervical compression myelopathy. An analysis of the factors involved. J Bone Joint Surg Br 1989; 71 (03) 393-398
  • 25 Fukushima T, Ikata T, Taoka Y, Takata S. Magnetic resonance imaging study on spinal cord plasticity in patients with cervical compression myelopathy. Spine 1991; 16 (10, Suppl): S534-S538
  • 26 Mastronardi L, Elsawaf A, Roperto R. , et al. Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy. J Neurosurg Spine 2007; 7 (06) 615-622
  • 27 Matsuda Y, Miyazaki K, Tada K. , et al. Increased MR signal intensity due to cervical myelopathy. Analysis of 29 surgical cases. J Neurosurg 1991; 74 (06) 887-892
  • 28 Matsumoto M, Toyama Y, Ishikawa M, Chiba K, Suzuki N, Fujimura Y. Increased signal intensity of the spinal cord on magnetic resonance images in cervical compressive myelopathy. Does it predict the outcome of conservative treatment?. Spine 2000; 25 (06) 677-682
  • 29 Mehalic TF, Pezzuti RT, Applebaum BI. Magnetic resonance imaging and cervical spondylotic myelopathy. Neurosurgery 1990; 26 (02) 217-226 ; discussion 226–227
  • 30 Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and MRI of the spinal cord. Spine 2001; 26 (11) 1238-1245
  • 31 Puzzilli F, Mastronardi L, Ruggeri A, Lunardi P. Intramedullary increased MR signal intensity and its relation to clinical features in cervical myelopathy. J Neurosurg Sci 1999; 43 (02) 135-139 ; discussion 139
  • 32 Takahashi M, Yamashita Y, Sakamoto Y, Kojima R. Chronic cervical cord compression: clinical significance of increased signal intensity on MR images. Radiology 1989; 173 (01) 219-224
  • 33 An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 1995; 20 (20) 2211-2216
  • 34 Grossman W, Peppelman WC, Baum JA, Kraus DR. The use of freeze-dried fibular allograft in anterior cervical fusion. Spine 1992; 17 (05) 565-569
  • 35 Segal HD. Performing anterior cervical fusion with either autograft or allograft. Spine 1996; 21 (10) 1276-1277
  • 36 Connolly PJ, Esses SI, Kostuik JP. Anterior cervical fusion: outcome analysis of patients fused with and without anterior cervical plates. J Spinal Disord 1996; 9 (03) 202-206
  • 37 Mastronardi L, Ducati A, Ferrante L. Anterior cervical fusion with polyetheretherketone (PEEK) cages in the treatment of degenerative disc disease. Preliminary observations in 36 consecutive cases with a minimum 12-month follow-up. Acta Neurochir (Wien) 2006; 148 (03) 307-312 ; discussion 312
  • 38 Agrillo U, Mastronardi L, Puzzilli F. Anterior cervical fusion with carbon fiber cage containing coralline hydroxyapatite: preliminary observations in 45 consecutive cases of soft-disc herniation. J Neurosurg 2002; 96 (3, Suppl): 273-276
  • 39 Matgé G. Cervical cage fusion with 5 different implants: 250 cases. Acta Neurochir (Wien) 2002; 144 (06) 539-549 ; discussion 550
  • 40 Elsawaf A, Mastronardi L, Roperto R, Bozzao A, Caroli M, Ferrante L. Effect of cervical dynamics on adjacent segment degeneration after anterior cervical fusion with cages. Neurosurg Rev 2009; 32 (02) 215-224 ; discussion 224
  • 41 Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K. Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 1993; 18 (15) 2167-2173
  • 42 Cherubino P, Benazzo F, Borromeo U, Perle S. Degenerative arthritis of the adjacent spinal joints following anterior cervical spinal fusion: clinicoradiologic and statistical correlations. Ital J Orthop Traumatol 1990; 16 (04) 533-543
  • 43 Clements DH, O'Leary PF. Anterior cervical discectomy and fusion. Spine 1990; 15 (10) 1023-1025
  • 44 Döhler JR, Kahn MR, Hughes SP. Instability of the cervical spine after anterior interbody fusion. A study on its incidence and clinical significance in 21 patients. Arch Orthop Trauma Surg 1985; 104 (04) 247-250
  • 45 Eck JC, Humphreys SC, Lim TH. , et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine 2002; 27 (22) 2431-2434
  • 46 Goffin J, van Loon J, Van Calenbergh F, Plets C. Long-term results after anterior cervical fusion and osteosynthetic stabilization for fractures and/or dislocations of the cervical spine. J Spinal Disord 1995; 8 (06) 500-508 ; discussion 499
  • 47 Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 1999; 81 (04) 519-528
  • 48 Maiman DJ, Kumaresan S, Yoganandan N, Pintar FA. Biomechanical effect of anterior cervical spine fusion on adjacent segments. Biomed Mater Eng 1999; 9 (01) 27-38
  • 49 Matsunaga S, Kabayama S, Yamamoto T, Yone K, Sakou T, Nakanishi K. Strain on intervertebral discs after anterior cervical decompression and fusion. Spine 1999; 24 (07) 670-675
  • 50 Pospiech J, Stolke D, Wilke HJ, Claes LE. Intradiscal pressure recordings in the cervical spine. Neurosurgery 1999; 44 (02) 379-384 ; discussion 384–385
  • 51 Woesner ME, Mitts MG. The evaluation of cervical spine motion below C2: a comparison of cineroentgenographic and conventional roentgenographic methods. Am J Roentgenol Radium Ther Nucl Med 1972; 115 (01) 148-154
  • 52 Lin TW, Corvelli AA, Frondoza CG, Roberts JC, Hungerford DS. Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. J Biomed Mater Res 1997; 36 (02) 137-144
  • 53 Hanc M, Fokter SK, Vogrin M, Molicnik A, Recnik G. Porous tantalum in spinal surgery: an overview. Eur J Orthop Surg Traumatol 2016; 26 (01) 1-7
  • 54 King V, Swart A, Winder MJ. Tantalum trabecular metal implants in anterior cervical corpectomy and fusion: 2-year prospective analysis. J Clin Neurosci 2016; 32: 91-94
  • 55 Papacci F, Rigante L, Fernandez E, Meglio M, Montano N. Anterior cervical discectomy and interbody fusion with porous tantalum implant. Results in a series with long-term follow-up. J Clin Neurosci 2016; 33: 159-162
  • 56 Fernández-Fairen M, Murcia A, Torres A, Hernández-Vaquero D, Menzie AM. Is anterior cervical fusion with a porous tantalum implant a cost-effective method to treat cervical disc disease with radiculopathy?. Spine 2012; 37 (20) 1734-1741
  • 57 Vicario C, Lopez-Oliva F, Sánchez-Lorente T. , et al. Anterior cervical fusion with tantalum interbody implants. Clinical and radiological results in a prospective study [in Spanish]. Neurocirugia (Astur) 2006; 17 (02) 132-139 , discussion 139
  • 58 Kasliwal MK, Baskin DS, Traynelis VC. Failure of porous tantalum cervical interbody fusion devices: two-year results from a prospective, randomized, multicenter clinical study. J Spinal Disord Tech 2013; 26 (05) 239-245
  • 59 Löfgren H, Engquist M, Hoffmann P, Sigstedt B, Vavruch L. Clinical and radiological evaluation of Trabecular Metal and the Smith-Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up. Eur Spine J 2010; 19 (03) 464-473