Osteologie 2018; 27(01): 8-12
DOI: 10.1055/s-0038-1636972
Therapieinduzierte Osteoporose – Treatment-induced osteoporosis
Schattauer GmbH

Knochenverlust nach bariatrischen Eingriffen

Bone Loss after Bariatric Surgery
Z. Messner
1   Barmherzige Schwestern Krankenhaus Wien, II. Medizinische Abteilung, Akademisches Lehrkrankenhaus der Medizinischen Universität Wien, VINforce Study Group, Wien, Österreich
,
A. Kocijan
2   Optimal Essen e.U., Vienna, Austria
,
R. Kocijan
1   Barmherzige Schwestern Krankenhaus Wien, II. Medizinische Abteilung, Akademisches Lehrkrankenhaus der Medizinischen Universität Wien, VINforce Study Group, Wien, Österreich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 09. November 2017

angenommen: 29. November 2017

Publikationsdatum:
07. März 2018 (online)

Zusammenfassung

Bariatrische Chirurgie stellt eine effektive Behandlungsmethode für pathologische Adipositas dar. Neben den positiven kardiovaskulären Effekten kommt es jedoch zu zahlreichen negativen Effekten auf den Knochenmetabolismus. Die Genese des Knochenverlustes ist multifaktoriell und inkludiert Malabsorption, Vitamin D-Insuffizienz, Hypokalzämie, Hyperparathyreoidismus, “skeletal unloading” und einen erhöhten Knochenturnover. Das Resultat ist ein Verlust von Knochendichte und -struktur, sowohl im trabekulären als auch im kortikalen Bereich. Zusätzlich kommt es zu einem Abfall der Muskelmasse. Veränderungen im Knochenstoffwechsel normalisieren sich innerhalb von 2 Jahren. Der Knochendichteverlust dürfte jedoch anhalten. Die aktuelle Datenlage gibt Evidenz über ein erhöhtes Frakturrisiko bereits 2 Jahre nach bariatrischem Eingriff. Langzeitstudien haben jedoch eine weitere Zunahme des Frakturrisikos über 10 Jahre und mehr gezeigt. Frakturen treten sowohl an Osteoporose-typischen, als auch Osteoporose-untypischen Stellen auf. Eine Vitamin D-, Kalzium- und Proteinsubstitution scheint bereits präoperativ unerlässlich, um dem postoperativen Knochenmasseverlust entgegen zu wirken.

Summary

Obesity is an increasing global burden, associated with increased risk for co-morbidities and mortality. Bariatric procedures, such as Rouxen-γ gastric bypass (RYGB) and sleeve gastrectomy (SG) are effective treatment options to reduce body weight and cardiovascular risk. However, numerous negative effects on bone metabolism have been reported. Bone loss seems to be multifactorial, including malabsorption, vitamin D insufficiency, hypocalcemia, hyperparathyreoidism, “skeletal unloading” and an increased bone turnover. An intestinale inflammation and changes in the RANKL (Receptor activator of NF-kB Ligand)/Osteoprotegerin (OPG)-ratio could also be explanations for bone loss after bariatric surgery. Consequently, bone mineral density decreases and bone microstructural deteriorations occur in both, trabecular and cortical bone. Bone turnover seems to normalize after two years, however, bone loss continues. An increased fracture risk has been reported in many, but not all studies, mostly depending on type of procedure. An elevated risk for fractures was reported at year two after operation with a continuing incline over time. Fractures occur at typical (hip, radius) and atypical (fingers, toes, sternum) sides. Besides bone loss, RYGB and SG are also associated with muscle loss and sarcopenia. There is strong evidence for vitamin D, calcium and protein substitution to avoid bone and muscle loss as well as high bone turnover after bariatric surgery. The substitution should be started preoperatively.

 
  • Literatur

  • 1 Finucane D. Quiz. Molar-incisor hypomineralization. Journal of the Irish Dental Association 2011; 57 (01) 20 49..
  • 2 Ricci C, Gaeta M, Rausa E, Macchitella Y, Bonavina L. Early impact of bariatric surgery on type II diabetes, hypertension, and hyperlipidemia: a systematic review, meta-analysis and meta-regression on 6,587 patients. Obesity surgery 2014; 24 (04) 522-528.
  • 3 NIH conference Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Annals of internal medicine 1991; 115 (12) 956-961.
  • 4 Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obesity surgery 2013; 23 (04) 427-436.
  • 5 Carlin AM, Rao DS, Yager KM, Parikh NJ, Kapke A. Treatment of vitamin D depletion after Rouxen-Y gastric bypass: a randomized prospective clinical trial. Surgery for obesity and related diseases: official journal of the American Society for Bariatric Surgery 2009; 05 (04) 444-449.
  • 6 Flores L, Osaba MJ, Andreu A, Moize V, Rodriguez L, Vidal J. Calcium and vitamin D supplementation after gastric bypass should be individualized to improve or avoid hyperparathyroidism. Obesity surgery 2010; 20 (06) 738-743.
  • 7 Riedt CS, Brolin RE, Sherrell RM, Field MP, Shapses SA. True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity 2006; 14 (11) 1940-1948.
  • 8 Folli F, Sabowitz BN, Schwesinger W, Fanti P, Guardado-Mendoza R, Muscogiuri G. Bariatric surgery and bone disease: from clinical perspective to molecular insights. International journal of obesity 2012; 36 (11) 1373-1379.
  • 9 Deitel M. Bariatric surgery, proton pump inhibitors, and possibility of osteoporosis. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery 2010; 06 (04) 461-462.
  • 10 Stein EM, Silverberg SJ. Bone loss after bariatric surgery: causes, consequences, and management. The lancet Diabetes & endocrinology 2014; 02 (02) 165-174.
  • 11 Stein EM, Carrelli A, Young P, Bucovsky M, Zhang C, Schrope B. et al. Bariatric surgery results in cortical bone loss. The Journal of clinical endocrinology and metabolism 2013; 98 (02) 541-549.
  • 12 Muschitz C, Kocijan R, Marterer C, Nia AR, Muschitz GK, Resch H. et al. Sclerostin levels and changes in bone metabolism after bariatric surgery. The Journal of clinical endocrinology and metabolism 2015; 100 (03) 891-901.
  • 13 Katz S, Weinerman S. Osteoporosis and gastrointestinal disease. Gastroenterology & hepatology 2010; 06 (08) 506-517.
  • 14 Bernstein CN, Leslie WD, Leboff MS. AGA technical review on osteoporosis in gastrointestinal diseases. Gastroenterology 2003; 124 (03) 795-841.
  • 15 Rosen CJ. Serotonin rising--the bone, brain, bowel connection. The New England journal of medicine 2009; 360 (10) 957-959.
  • 16 Carswell KA, Vincent RP, Belgaumkar AP, Sherwood RA, Amiel SA, Patel AG. et al. The effect of bariatric surgery on intestinal absorption and transit time. Obesity surgery 2014; 24 (05) 796-805.
  • 17 Boerlage TC, Westerink F, Poland DC, Huibregtse IL, Acherman YI, Gerdes VE. Fecal Calprotectin, Elastase, and Alpha-1-Antitrypsin Levels After Roux-en-Y Gastric Bypass; Calprotectin Is Significantly Elevated in the Majority of Patients. Obesity surgery 2016; 26 (12) 2974-2980.
  • 18 Quercia I, Dutia R, Kotler DP, Belsley S, Laferrere B. Gastrointestinal changes after bariatric surgery. Diabetes & metabolism 2014; 40 (02) 87-94.
  • 19 Shanbhogue VV, Stoving RK, Frederiksen KH, Hanson S, Brixen K, Gram J. et al. Bone structural changes after gastric bypass surgery evaluated by HR-pQCT: a two-year longitudinal study. European journal of endocrinology 2017; 176 (06) 685-693.
  • 20 Maghrabi AH, Wolski K, Abood B, Licata A, Pothier C, Bhatt DL. et al. Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity 2015; 23 (12) 2344-2348.
  • 21 Fleischer J, Stein EM, Bessler M, Della MBadia, Restuccia N, Olivero-Rivera L. et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. The Journal of clinical endocrinology and metabolism 2008; 93 (10) 3735-3740.
  • 22 Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa TP, Cooper C. et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. Bmj 2012; 345: e5085.
  • 23 Yu EW, Lee MP, Landon JE, Lindeman KG, Kim SC. Fracture Risk After Bariatric Surgery: Rouxen-Y Gastric Bypass Versus Adjustable Gastric Banding. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2017; 32 (06) 1229-1236.
  • 24 Lu CW, Chang YK, Chang HH, Kuo CS, Huang CT, Hsu CC. et al. Fracture Risk After Bariatric Surgery: A 12-Year Nationwide Cohort Study. Medicine 2015; 94 (48) e2087.
  • 25 Nakamura KM, Haglind EG, Clowes JA, Achenbach SJ, Atkinson EJ, Melton 3rd LJ. et al. Fracture risk following bariatric surgery: a populationbased study. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2014; 25 (01) 151-158.
  • 26 Rousseau C, Jean S, Gamache P, Lebel S, Mac-Way F, Biertho L. et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. Bmj 2016; 354: i3794.
  • 27 Muschitz C, Kocijan R, Haschka J, Zendeli A, Pirker T, Geiger C. et al. The Impact of Vitamin D, Calcium, Protein Supplementation, and Physical Exercise on Bone Metabolism After Bariatric Surgery: The BABS Study. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2016; 31 (03) 672-682.
  • 28 Lanzarini E, Nogues X, Goday A, Benaiges D, de Ramon M, Villatoro M. et al. High-Dose Vitamin D Supplementation is Necessary After Bariatric Surgery: A Prospective 2-Year Follow-up Study. Obesity surgery 2015; 25 (09) 1633-1638.
  • 29 Chakhtoura MT, Nakhoul N, Akl EA, Mantzoros CS, El Hajj GAFuleihan. Guidelines on vitamin D replacement in bariatric surgery: Identification and systematic appraisal. Metabolism: clinical and experimental 2016; 65 (04) 586-597.
  • 30 Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM. et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity 2013; 21 (Suppl. 01) S1-S27.
  • 31 Avgerinos DV, Leitman IM, Martinez RE, Liao EP. Evaluation of markers for calcium homeostasis in a population of obese adults undergoing gastric bypass operations. Journal of the American College of Surgeons 2007; 205 (02) 294-297.
  • 32 Schollenberger AE, Karschin J, Meile T, Kuper MA, Konigsrainer A, Bischoff SC. Impact of protein supplementation after bariatric surgery: A randomized controlled double-blind pilot study. Nutrition 2016; 32 (02) 186-192.
  • 33 Lopes DGomes, Moehlecke M, Lopes da FBSilva, Dutra ES, D’Agord BSchaan, Baiocchi de KMCarvalho. Whey Protein Supplementation Enhances Body Fat and Weight Loss in Women Long After Bariatric Surgery: a Randomized Controlled Trial. Obesity surgery 2017; 27 (02) 424-431.
  • 34 Campanha-Versiani L, Pereira DAG, Ribeiro-Samora GA, Ramos AV, de Sander MFHDiniz, De Marco LA. et al. The Effect of a Muscle Weight-Bearing and Aerobic Exercise Program on the Body Composition, Muscular Strength, Biochemical Markers, and Bone Mass of Obese Patients Who Have Undergone Gastric Bypass Surgery. Obesity surgery 2017; 27 (08) 2129-2137.
  • 35 Corbeels K. et al. Supplementation of Calcium and Vitamin D prevents bone loss after bariatric surgery, Abstract. ASBMR. 2017: SU0262.
  • 36 Yu E. et al. Longitudinal Five-Year Changes in Bone Density and Microsárchitecture after Roux-En-γ-Gastric Bypass. ASBMR 2017; 1125.
  • 37 Harris et al. The Risk of Fracture among men with sarcopenia, obesity, their combination sarcopenic obesity, and men with neither condition: the MrOS Study. ASBMR 2017; 1156.