Nuklearmedizin 1998; 37(07): 227-233
DOI: 10.1055/s-0038-1632339
Originalarbeiten — Original Articles
Schattauer GmbH

F-18-FDG-PET der Schilddrüse bei Morbus Basedow

F-18-FDG PET of the Thyroid in Graves’ Disease
Anne-Rose Börner
1   Klinik und Poliklinik für Nuklearmedizin, Universität zu Köln,
,
E. Voth
1   Klinik und Poliklinik für Nuklearmedizin, Universität zu Köln,
,
K. Wienhard
2   Max-Planck-Institut für Neurologische Forschung, Köln, Deutschland
,
R. Wagner
2   Max-Planck-Institut für Neurologische Forschung, Köln, Deutschland
,
H. Schicha
1   Klinik und Poliklinik für Nuklearmedizin, Universität zu Köln,
› Author Affiliations
Further Information

Publication History

Eingegangen: 04 February 1998

in revidierter Form: 26 May 1998

Publication Date:
03 February 2018 (online)

Zusammenfassung

Ziel: Diese Studie evaluiert F-18-Fluoro-Deoxy-Glukose (F-18-FDG) PET der Schilddrüse bei Patienten mit M. Basedow. Methoden: 30 Patienten wurden am Tag vor Radioiod-Therapie, 15 Patienten am 3.-1 O. Tag nach Radioiod-Therapie untersucht. 20 Patienten mit Kopf/Halstumoren und normaler Schilddrüsenfunktion dienten als Kontrollgruppe. Ergebnisse: Die F-18-FDG-Aufnahme in die Schilddrüse war signifikant höher bei Patienten mit M. Basedow im Vergleich zu den Kontrollen. Sie stieg mit höheren, antithyreoidalen Antikörpern und sank bei längerer 1-131-Halbwertzeit. Es bestand eine Korrelation einer reduzierten Gluko- se-Utilisation bei höherer absorbierter Schilddrüsendosis nach Radioiod-Therapie. Schlußfolgerung: Damit erscheint die F-18-FDG-PET- Untersuchung zur biologischen Aktivitätsbeurteilung des M. Basedow und Darstellung von frühen Strahleneffekten geeignet.

Summary

Aim: This study evaluates F-18-FDG PET of the thyroid in Graves’ disease. Methods: Thirty patients were investigated the day before radioiodine therapy, 15 patients 3-10 days after radioiodine therapy. Twenty patients with cancer of the head or neck and normal thyroid function served as controls. Results: F-18-FDG uptake was higher in Graves’ disease patients than in controls. Negative correlations of F-18- FDG uptake with half-life of radioiodine and absorbed radiation dose due to radioiodine therapy were found along with a positive correlation to autoantibody levels. Conclusion: Thus F-18-FDG PET is likely to give information on the biological activity of Graves’ disease as well as on early radiation effects.

 
  • Literatur

  • 1 Adler LP, Bloom AD. Positron emission tomography of thyroid masses. Thyroid 1993; 3: 195-200.
  • 2 Arora KK, Filburn CR, Pedersen PL. Structure/function relationships in hexokinase: Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzyme. J Biol Chem 1993; 268: 18259-66.
  • 3 Ashiwa K, Cheng SY. Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proc Natl Acad Sei 1992; 89: 9277-81.
  • 4 Casla A, Rovira A, Wells JA, Dohm GL. Increased glucose transporter (GLUT 4) protein expression in hyperthyroidism. Biochem Biophys Res Comm 1990; 171: 182-8.
  • 5 Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996; 379: 458-60.
  • 6 Endo T, Shimura H, Saito T, Ikeda M, Ohmori M, Onaya T. Thyreotropin stimulates glucose regulated protein (GRP 78) gene expression in rat functional thyroid epithelial cells, FRTL. Mol Endocrinol 1991; 5: 905-10.
  • 7 Feine U, Lietzenmayer R, Hanke JP, Wöhrle H, Müller-Schauenburg W. 18-FDG-Ganzkörper-PET bei differenzierten Schilddrüsenkarzinomen. Nuklearmedizin 1995; 34: 127-34.
  • 8 Field JB. Intermediary metabolism of the thyroid. Greep RO, Astwood EB. Handbook of Physiology, Section 7: Endocrinology, Part III: Thyroid.. Washington: American Physiological Society; 1974: 147-59.
  • 9 Filetti S, Damante G, Foti D. Thyrotropin stimulates glucose transport in cultured rat thyroid cells. Endocrinology 1987; 120: 2576-81.
  • 10 Flower MA, Al-Saadi A, Harmer CL, McReady VR, Ott RJ. Dose-response study on thyreotoxic patients undergoing positron emission tomography and radioiodine therapy. Eur J Nucl Med 1994; 21: 531-6.
  • 11 Gould GW, Thomas HM, Jess TJ, Bell GI. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specifities of erythrocyte, liver, and brain isoform. Biochem 1991; 30: 5139-45.
  • 12 Haber RS, Weinstein SP, O¥Boyle E, Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 1993; 132: 2538-43.
  • 13 Haraguchi K, Sheela RCS, Field JB. Effects of thyrotropin, carbachol, and protein kinase-C stimulators on glucose transport and glucose oxidation by primary cultures of dog thyroid cells. Endocrinology 1988; 123: 1288-95.
  • 14 Hosaka Y, Tawata M, Kurihara A, Ohtaka M, Endo T, Onaya T. The regulation of two distinct glucose transporter (GLUT 1 and GLUT 4) gene expressions in cultured rat thyroid cells by thyreotropin. Endocrinology 1992; 131: 159-65.
  • 15 Joensuu H, Ahonen A. Imaging of metastasis of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987; 28: 910-4.
  • 16 Keyes JW. SUV: Standard uptake or silly useless value?. J Nucl Med 1995; 36: 1836-9.
  • 17 Kevetny J, Matzen LE. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: Evidence of an effect of total T4 and not “free T4”. Horm Metab Res 1990; 22: 485-9.
  • 18 Langen KJ, Braun U, Rota Kops E, Herzog H, Kuwert T, Nebeling B, Feinendegen LE. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 1993; 34: 355-9.
  • 19 Laville M, Khalfallah Y, Vidal H, Beylot M, Comte B, Riou JP. Hormonal control of glucose production and pyruvate kinase activity in isolated rat liver cells: Influence of hypothyroidism. Mol Cell Endocrinol 1987; 50: 247-53.
  • 20 Machado VLA, Wassermann GF, Marques M. In vitro effect of insulin on the uptake of glucose and alpha-aminoisobutyric acid in the thyroid gland of the turtle (Chrysemys dorbigni). Gen Comp Endocrinol 1991; 82: 8-13.
  • 21 Minn H, Joensuu H, Ahonen A, Klemi P. Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors. Cancer 1988; 61: 1776-81.
  • 22 Moka D, Theissen P, Linden A, Waters W, Schicha H. Einfluß von Hyper- und Hypothyreose auf den Energiestoffwechsel der Skelettmuskulatur – Eine Untersuchung mit 31P-Kernspinspektroskopie. Nuklearmedizin 1991; 30: 77-83.
  • 23 Mueller MJ, von Schulz B, Huhnt HJ, Zick R, Mitzkat HJ, von zur Mühlen A. Glucoregulatory function of thyroid hormones: Interaction with insulin depends on the prevailing glucose concentration. J Clin Endocrinol Metab 1986; 63: 62-71.
  • 24 Paschke R, Vogg M, Swillens S, Usadel KH. Correlation of microsomal antibodies with the intensity of the intrathyroidal autoimmune process in Graves’ disease. J Clin Endocrinol Metab 1993; 77: 939-43.
  • 25 Sabri O, Schulz G, Zimny M, Schreckenberger M, Zimny D, Wagenknecht G, Kaiser Dohmen BM, Bares R, Büll U. Determination of factors influencing the outcome of radioiodine therapy in patients with Graves’ disease. Nuklearmedizin 1998; 37: 83-9.
  • 26 Schomburg A, Bender H, Reichelt C, Sommer T, Ruhlmann J, Kozak B, Biersack HJ. Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures. Eur J Nucl Med 1996; 23: 571-4.
  • 27 Sachs L. Angewandte Statistik, 6. Auflage.. Berlin – Heidelberg – New York – Tokio: Springer; 1984
  • 28 Sisson JC, Ackermann RJ, Meyer MA, Wahl RL. Uptake of 18-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 1993; 77: 1090-4.
  • 29 Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The (14C)deoxyglucose method for the measurement of local cerebral glucose utilisation: theory, procedure, and normal values in the conscious and anesthesized albino rat. J Neurochem 1977; 28: 897-916.
  • 30 Ulisse S, Jannini EA, Pepe M, De Matteis S, D’Armiento M. Thyroid hormones stimulate glucose transport and GLUT 1 mRNA in rat Sertoli cells. Mol Cell Endocrinol 1992; 87: 131-7.
  • 31 Weinstein SP, Watts J, Haber RS. Thyroid hormone increases muscle/fat glucose transporter gene expression in rat skeletal muscle. Endocrinology 1991; 129: 455-64.
  • 32 Wienhard K. The FDG model and its application in clinical PET studies. J Neural Transm Suppl 1992; 37 Suppl: 39-52.
  • 33 Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss WD. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992; 16: 804-13.
  • 34 Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD. Estimation of local cerebral glucose utilisation by positron emission tomography of 18 F 2-fluoro-2-deoxy-d- glucose: A critical appraisal of optimization procedures. J Cereb Blood Flow Metab 1985; 5: 115-25.
  • 35 Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine- induced inflammatory tissue. J Nucl Med 1995; 36: 1301-6.
  • 36 Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[Fluorine-18]-Flouro-2-deoxy-D-glucose: Variations with body weight and a method for correction. Radiology 1993; 189: 847-50.