Osteologie 2013; 22(01): 25-30
DOI: 10.1055/s-0038-1630101
High-resolution methods in osteology
Schattauer GmbH

Gene expression analyses for osteoporosis research

Genexpressionsanalytik in der Osteoporoseforschung
U. Föger-Samwald
1   Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology and Immunology; Medical University of Vienna, Austria
,
P. Pietschmann
1   Department of Pathophysiology and Allergy Research; Center of Pathophysiology, Infectiology and Immunology; Medical University of Vienna, Austria
› Author Affiliations
Further Information

Publication History

received: 23 October 2012

accepted: 27 October 2012

Publication Date:
29 January 2018 (online)

Summary

Gene expression describes the process of converting the information encoded in the genome into functional gene products like proteins or functional RNAs in the case of non coding RNA genes. Gene expression analysis seeks to identify those genes that are expressed and the level at which they are expressed under certain circumstances. As changes of gene expression are associated with both physiological and pathological processes, gene expression analysis provides a powerful tool to understand the molecular basis of biological processes like cellular differentiation, aging or adaptive responses to the environment and to provide a comprehensive understanding of the molecular basis of complex diseases. In the field of osteology, gene expression analysis has contributed substantially to novel insights into fundamental processes like osteoblast and osteoclast differentiation, bone formation and mineralization, and to novel insights into molecular changes occurring in complex diseases such as osteoporosis or rheumatoid arthritis. This review is aimed at giving an overview on the different techniques available to quantify gene expression and its application in osteoporosis research.

Zusammenfassung

Genexpression bezeichnet die Umsetzung der im Genom gespeicherten Information in Proteine oder – im Fall von nicht kodierenden RNA-Genen – in funktionale RNAs. Ziel der Genexpressionsanalytik ist es, zu untersuchen, welche Gene in welchem Ausmaß unter bestimmten Umständen exprimiert werden. Änderungen im Expressionsmuster sind sowohl mit physiologischen als auch mit pathologischen Prozessen verknüpft. Diese Änderungen mit Hilfe der Genexpressionsanalytik zu untersuchen, hilft uns daher, die molekulare Basis von biologischen Prozessen wie der Zelldifferenzierung, dem Alterungsprozess oder von Anpassungen an unterschiedliche Bedingungen, aber auch die molekulare Basis von komplexen Krankheiten, zu verstehen. Im Bereich der Osteologie hat die Genexpressionsanalytik wesentlich dazu beigetragen, neue Einsichten in grundlegende Prozesse wie die Osteoblasten- und Osteoklasten-Differenzierung oder die Knochenformation und Knochenmineralisation und in die molekularen Veränderungen, die mit komplexen Krankheiten wie der Osteoporose oder der rheumatoiden Arthritis einhergehen, zu gewinnen. Diese Arbeit soll eine Übersicht über die verschiedenen in der Genexpressionsanalytik verwendeten Methoden und deren Anwendung im Bereich der Osteoporoseforschung geben.

 
  • References

  • 1 Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 1977; 74 (12) 5350-5354.
  • 2 Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992; 257 (5072) 967-971.
  • 3 Roth CM. Quantifying gene expression. Curr Issues Mol Biol 2002; 4 (3) 93-100.
  • 4 VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 2008; 44 (5) 619-626.
  • 5 Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270 (5235) 467-470.
  • 6 Deyholos MK, Galbraith DW. High-density microarrays for gene expression analysis. Cytometry 2001; 43 (4) 229-238.
  • 7 Rotilio D, Della Corte A, D'Imperio M. et al. Proteomics: bases for protein complexity understanding. Thromb Res 2012; 129 (3) 257-262.
  • 8 O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250 (10) 4007-4021.
  • 9 Fenn JB, Mann M, Meng CK. et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246 (4926) 64-71.
  • 10 N. N. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285 (6) 785-795.
  • 11 Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev 2010; 31 (5) 629-662.
  • 12 Obermayer-Pietsch B. Candidate genes and new therapeutic options for osteoporosis. Osteologie 2011; 20 (3) 227-232.
  • 13 Xiao Y, Fu H, Prasadam I. et al. Gene expression profiling of bone marrow stromal cells from juvenile, adult, aged and osteoporotic rats: with an emphasis on osteoporosis. Bone 2007; 40 (3) 700-715.
  • 14 Dalle Carbonare L, Valenti MT, Zanatta M. et al. Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 2009; 60 (11) 3356-3365.
  • 15 Walsh CA, Birch MA, Fraser WD. et al. Cytokine expression by cultured osteoblasts from patients with osteoporotic fractures. Int J Exp Pathol 2000; 81 (2) 159-163.
  • 16 Trost Z, Trebse R, Prezelj J. et al. A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts. Bone 2010; 46 (1) 72-80.
  • 17 Benisch P, Schilling T, Klein-Hitpass L. et al. The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 2012; 7 (9) e45142.
  • 18 Peterlik M. Wnt signaling pathways and bone turnover. Osteologie 2011; 20 (3) 197-202.
  • 19 Hurson CJ, Butler JS, Keating DT. et al. Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as putative drivers of osteoporosis. BMC Musculoskelet Disord 2007; 8: 12.
  • 20 Liu YZ, Dvornyk V, Lu Y. et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem 2005; 280 (32) 29011-29016.
  • 21 Chen XD, Xiao P, Lei SF. et al. Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J Bone Miner Res 2010; 25 (2) 339-355.
  • 22 Lei SF, Wu S, Li LM. et al. An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass. Bone 2009; 44 (5) 1010-1014.
  • 23 Deng FY, Lei SF, Chen XD. et al. An integrative study ascertained SOD2 as a susceptibility gene for osteoporosis in Chinese. J Bone Miner Res 2011; 26 (11) 2695-2701.
  • 24 Xiao P, Chen Y, Jiang H. et al. In vivo genome-wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Miner Res 2008; 23 (5) 644-654.
  • 25 Reppe S, Refvem H, Gautvik VT. et al. Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone 2010; 46 (3) 604-612.
  • 26 Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: Circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012 9. (6).
  • 27 Wang Y, Li L, Moore BT. et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS One 2012; 7 (4) e34641.
  • 28 Lei SF, Papasian CJ, Deng HW. Polymorphisms in Predicted miRNA Binding Sites and Osteoporosis. Journal of Bone and Mineral Research 2011; 26 (1) 72-78.
  • 29 Siris ES, Chen YT, Abbott TA. et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 2004; 164 (10) 1108-1112.
  • 30 Muschitz C, Patsch J, Buchinger E. et al. Prevalence of vertebral fracture in elderly men and women with osteopenia. Wien Klin Wochenschr 2009; 121 (15-16) 528-536.
  • 31 Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 2009; 44 (1) 87-101.
  • 32 Tsangari H, Findlay DM, Kuliwaba JS. et al. Increased expression of IL-6 and RANK mRNA in human trabecular bone from fragility fracture of the femoral neck. Bone 2004; 35 (1) 334-342.
  • 33 Tsangari H, Findlay DM, Zannettino AC. et al. Evidence for reduced bone formation surface relative to bone resorption surface in female femoral fragility fracture patients. Bone 2006; 39 (6) 1226-1235.
  • 34 Abdallah BM, Stilgren LS, Nissen N. et al. Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int 2005; 76 (2) 90-97.
  • 35 Logar DB, Komadina R, Prezelj J. et al. Expression of bone resorption genes in osteoarthritis and in osteoporosis. J Bone Miner Metab 2007; 25 (4) 219-225.
  • 36 Zupan J, Komadina R, Marc J. The relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human osteoporotic and osteoarthritic bone tissues. J Biomed Sci 2012; 19: 28.
  • 37 D'Amelio P, Roato I, D'Amico L. et al. Bone and bone marrow pro-osteoclastogenic cytokines are up-regulated in osteoporosis fragility fractures. Osteoporos Int 2011; 22 (11) 2869-2877.
  • 38 Dragojevic J, Logar DB, Komadina R, Marc J. Osteoblastogenesis and adipogenesis are higher in osteoarthritic than in osteoporotic bone tissue. Arch Med Res 2011; 42 (5) 392-397.
  • 39 Balla B, Kosa JP, Kiss J. et al. Different gene expression patterns in the bone tissue of aging postmenopausal osteoporotic and non-osteoporotic women. Calcif Tissue Int 2008; 82 (1) 12-26.
  • 40 Patsch JM, Kohler T, Berzlanovich A. et al. Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis. J Bone Miner Res 2011; 26 (7) 1584-1592.