Kinder- und Jugendmedizin 2009; 09(08): 447-453
DOI: 10.1055/s-0038-1628970
Endokrinologie
Schattauer GmbH

Der nicht klassische 21-Hydroxylasemangel

Klinik, Diagnostik und TherapieNon-classical 21-hydroxylase deficiencyClinical manifestation, diagnostics and therapy
F. G. Riepe
1   Klinik für Allgemeine Pädiatrie, Bereich Pädiatrische Endokrinologie und Diabetologie, Christian-Albrechts-Universität zu Kiel, Universitätsklinikum Schleswig-Holstein, Campus Kiel
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen am: 15. Juni 2009

angenommen am: 26. Juni 2009

Publikationsdatum:
27. Januar 2018 (online)

Zusammenfassung

Das Adrenogenitale Syndrom (AGS) vom Typ des 21-Hydroxylasemangels gehört zu den häufigsten genetischen Erkrankungen. Durch eine Störung der Glukokortikoidbiosynthese in der Nebennierenrinde kommt es zur unzureichenden Synthese von Cortisol und konsekutiv zu einer vermehrten Bildung von Androgenen. Bei schweren Enzymdefekten ist eine pränatal beginnende Virilisierung weiblicher Feten die Folge. Weniger schwere Defekte führen zum nicht klassischen AGS, welches sich erst postnatal mit einer Hyperandrogenämie manifestiert. Das Manifestationsalter schwankt zwischen dem Grundschul- und dem Erwachsenenalter. Typische klinische Zei-chen bei Kindern sind eine prämature Pubarche, eine Wachstumsbeschleunigung oder eine Akne. Bei Jugendlichen und erwachsenen Frauen können Hirsutismus, Zyklusstörungen, Infertilität oder eine androgenetische Alopezie auffallen. Der Schweregrad der Symptome ist sehr variabel. Die Diagnose kann hormo-nell mittels eines ACTH-Stimulationstest erfolgen, in dem das Steroid 17-Hydroxyprogesteron signifikant erhöht ist. Die Therapie besteht aus einer Gabe von Hydrocortison im Wachstumsalter und kann auf Prednison oder Dexamethason im Erwachsenenalter umgestellt werden.

Summary

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the most frequent genetic diseases. Insufficient biosyn-thesis of glucocorticoids in the adrenal cortex causes a subsequent biosynthesis of androgens within the organ. Complete or nearly complete inactivation of 21-hydroxylase leads to prenatal virilisation of female fetuses. Incompletely inactivated enzymes cause non-classical or late-onset forms of CAH, manifesting with hyperandrogenaemia postnatally. Age at manifestation varies from childhood to adulthood. Typical clinical signs in children are premature pubarche, acceleration of growth or acne. Female adolescents and adults show hirsutism, oligomenorrhoea, infertility or alopecia. The severity of symptoms is highly variable. The diagnosis can be set up by ACTH stimulation testing, in which the steroid 17-hydroxyprogesterone is significantly elevated. Medical treatment consists of hydrocortisone during growth and can be switched to prednisone or dexamethasone after closure of the epiphyseal cartilages.

 
  • Literatur

  • 1 Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004; 81 (01) 19-25.
  • 2 Augarten A, Weissenberg R, Pariente C, Sack J. Reversible male infertility in late onset congenital adrenal hyperplasia. J Endocrinol Invest 1991; 14 (03) 237-240.
  • 3 Balducci R, Boscherini B, Mangiantini A. et al. Isolated precocious pubarche: an approach. J Clin Endocrinol Metab 1994; 79 (02) 582-589.
  • 4 Bleicken C, Loidi L, Dhir V. et al. Functional characterization of three CYP21A2 sequence variants (p.A265V, p.W302S, p.D322G) employing a yeast co-expression system. Hum Mutat 2009; 30 (02) E443-450.
  • 5 Cabrera MS, Vogiatzi MG, New MI. Long term outcome in adult males with classic congenital adrenal hyperplasia. J Clin Endocrinol Metab 2001; 86 (07) 3070-3078.
  • 6 Cameron FJ, Tebbutt N, Montalto J. et al. Endocrinology and auxology of sibships with non-classical congenital adrenal hyperplasia. Arch Dis Child 1996; 74 (05) 406-411.
  • 7 Child DF, Bu’lock DE, Anderson DC. Adrenal steroidogenesis in hirsute women. Clin Endocrinol (Oxf) 1980; 12 (06) 595-601.
  • 8 Dewailly D, Vantyghem-Haudiquet MC, Sainsard C. et al. Clinical and biological phenotypes in late-onset 21-hydroxylase deficiency. J Clin Endocrinol Metab 1986; 63 (02) 418-423.
  • 9 Gibson M, Lackritz R, Schiff I, Tulchinsky D. Abnormal adrenal responses to adrenocorticotropic hormone in hyperandrogenic women. Fertil Steril 1980; 33 (01) 43-48.
  • 10 Granoff AB, Chasalow FI, Blethen SL. 17-Hydroxyprogesterone responses to adrenocorticotropin in children with premature adrenarche. J Clin Endocrinol Metab 1985; 60 (03) 409-415.
  • 11 Helmberg A, Tusie-Luna MT, Tabarelli M. et al. R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydroxylase deficiency that are not apparent gene conversions. Mol Endocrinol 1992; 6 (08) 1318-1322.
  • 12 Higashi Y, Yoshioka H, Yamane M. et al. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc Natl Acad Sci USA 83 (09) 2841-2845.
  • 13 Kalachanis I, Rousso D, Kourtis A. et al. Reversible infertility, pharmaceutical and spontaneous, in a male with late onset congenital adrenal hyperplasia, due to 21-hydroxylase deficiency. Arch Androl 2002; 48 (01) 37-41.
  • 14 Kashimada K, Ono M, Onishi T. et al. Clinical course of patients with nonclassical 21-hydroxylase deficiency (21-OHD) diagnosed in infancy and childhood. Endocr J 2008; 55 (02) 397-404.
  • 15 Kohn B, Levine LS, Pollack MS. et al. Late-onset steroid 21-hydroxylase deficiency: a variant of classical congenital adrenal hyperplasia. J Clin Endocrinol Metab 1982; 55 (05) 817-827.
  • 16 Krone N, Braun A, Roscher AA. et al. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab 2000; 85 (03) 1059-1065.
  • 17 Levine LS, Dupont B, Lorenzen F. et al. Cryptic 21-hydroxylase deficiency in families of patients with classical congenital adrenal hyperplasia. J Clin Endocrinol Metab 1980; 51 (06) 1316-1324.
  • 18 Lobo RA, Goebelsmann U. Adult manifestation of congenital adrenal hyperplasia due to incomplete 21-hydroxylase deficiency mimicking polycystic ovarian disease. Am J Obstet Gynecol 1980; 138 (06) 720-726.
  • 19 Ludwig E. Classification of the types of androgenetic alopecia (common baldness) occurring in the female sex. Br J Dermatol 1977; 97 (03) 247-254.
  • 20 Mirsky HA, Hines JH. Infertility in a man with 21-hydroxylase deficient congenital adrenal hyper-plasia. J Urol 1989; 142 (01) 111-113.
  • 21 New MI, Lorenzen F, Pang S. et al. „Acquired“ adrenal hyperplasia with 21-hydroxylase deficiency is not the same genetic disorders as congenital adrenal hyperplasia. J Clin Endocrinol Metab 1979; 48 (02) 356-359.
  • 22 New MI, Gertner JM, Speiser PW, Del Balzo P. Growth and final height in classical and nonclassical 21-hydroxylase deficiency. J Endocrinol Invest 1989; 12 8 Suppl 3 91-95.
  • 23 New MI. Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J Clin Endocrinol Metab 2006; 91 (11) 4205-4214.
  • 24 New MI. Nonclassic 21-hydroxylase deficiency. Fertil Steril 2006; 86 (Suppl. 01) S2.
  • 25 Richards GE, Grumbach MM, Kaplan SL, Conte FA. The effect of long acting glucocorticoids on menstrual abnormalities in patients with virilizing congenital adrenal hyperplasia. J Clin Endocrinol Metab 1978; 47 (06) 1208-1215.
  • 26 Riepe FG, Hiort O, Grotzinger J. et al. Functional and structural consequences of a novel point mutation in the CYP21A2 gene causing congenital a -drenal hyperplasia: potential relevance of helix C for P450 oxidoreductase-21-hydroxylase interaction. J Clin Endocrinol Metab 2008; 93 (07) 2891-2895.
  • 27 Speiser PW, Dupont B, Rubinstein P. et al. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet. 1985; 37 (04) 650-667.
  • 28 Stikkelbroeck NM, Hermus AR, Braat DD, Otten BJ. Fertility in women with congenital adrenal hyper-plasia due to 21-hydroxylase deficiency. Obstet Gynecol Surv 2003; 58 (04) 275-284.
  • 29 Stikkelbroeck NM, Hermus AR, Schouten D. et al. Prevalence of ovarian adrenal rest tumours and polycystic ovaries in females with congenital adrenal hyperplasia: results of ultrasonography and MR imaging. Eur Radiol 2004; 14 (10) 1802-1806.
  • 30 Temeck JW, Pang SY, Nelson C, New MI. Genetic defects of steroidogenesis in premature pubarche. J Clin Endocrinol Metab 1987; 64 (03) 609-617.
  • 31 Tusie-Luna MT, Traktman P, White PC. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J Biol Chem 1990; 265 (34) 20916-20922.
  • 32 Tusie-Luna MT, Speiser PW, Dumic M. et al. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol Endocrinol 1991; 5 (05) 685-692.
  • 33 Urban MD, Lee PA, Migeon CJ. Adult height and fertility in men with congenital virilizing adrenal hyperplasia. N Engl J Med 1978; 299 (25) 1392-1396.
  • 34 Wedell A, Ritzen EM, Haglund-Stengler B, Luthman H. Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations. Proc Natl Acad Sci USA 1992; 89 (15) 7232-7236.
  • 35 White PC, Grossberger D, Onufer BJ. et al. Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc Natl Acad Sci USA 1985; 82 (04) 1089-1093.
  • 36 White PC, Speiser PW. Congenital adrenal hyper-plasia due to 21-hydroxylase deficiency. Endocr Rev. 2000; 21 (03) 245-291.
  • 37 Wilson RC, Nimkarn S, Dumic M. et al. Ethnic-specific distribution of mutations in 716 patients with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Mol Genet Metab 2007; 90 (04) 414-421.