Nervenheilkunde 2013; 32(07): 475-483
DOI: 10.1055/s-0038-1628526
Neuroradiologie
Schattauer GmbH

Superselektive arterielle Spinmarkierung

Perfusions- und Angiografiemessungen in der KlinikSuperselective arterial spin labelingPerfusion and angiography measurements in clinical use
S. Rüfer
1   Institut für Neuroradiologie, UK S-H, Christian-Albrechts-Universität Kiel
,
M. Helle
2   Philips Technologie GmbH, Innovative Technologien Forschungslabor, Hamburg
,
O. Jansen
1   Institut für Neuroradiologie, UK S-H, Christian-Albrechts-Universität Kiel
› Author Affiliations
Further Information

Publication History

Eingegangen am: 04 March 2013

angenommen am: 05 March 2013

Publication Date:
24 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: Sind superselektive ASL-Angiografie- und Perfusionsmessungen bei zerebrovaskulären Erkrankungen mit der Darstellung einzelner intrakranieller Arterien und zerebraler Perfusionsterritorien im klinischen Alltag sinnvoll und durchführbar? Material und Methoden: Möglichkeiten und Nutzen der nicht invasiven MR-Methoden (superselective pCASL) werden an Probanden und Patienten mit Metastase, Meningeom, arteriovenöser Malformation und Fistel beispielhaft gezeigt. Ergebnisse: Die einzeln markierten Gefäße und Perfusionsterritorien sind bei allen untersuchten Personen klar abzugrenzen und die Blutversorgung der Läsion des Patienten daraus abzuleiten. Schlussfolgerung: Die vielversprechenden superselektiven ASL-Techniken erzielen zu herkömmlichen Bildgebungsmethoden vergleichbare Ergebnisse und können bei bestimmten Patienten mit weiterführenden Informationen zur Therapieplanung beitragen.

Summary

Objective: Are superselective perfusion and angiography measurements with arterial spin labeling (ASL) applied to diverse cerebrovascular diseases adequate and feasible in clinical use to describe distinct intracranial arteries and cerebral perfusion territories? Material and methods: The potential and benefits of the non-invasive MRI-methods (superselective pCASL) are illustrated by measurements with volunteers and patients suffering from metastasis, meningioma, arteriovenous malformation and fistula. Results: It was possible to differentiate the labeled vessels and perfusion territories from all examined individuals. The blood supply of the patient’s lesion could be inferred. Conclusion: Superselective ASL-methods seem very promising and achieved comparable results to conventional imaging techniques. Particular patients could benefit from additional information obtained from ASL for their treatment strategy.

 
  • Literatur

  • 1 Detre JA. et al. Perfusion imaging. Magn Reson Med 1992; 23: 37-45.
  • 2 Williams DS. et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 1992; 89: 212-6.
  • 3 Lanzmann RS. et al. Techniken der kontrastmittelfreien MR-Angiografie. Rofo 2011; 183 (10) 913-24.
  • 4 Detre JA. et al. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 2012; 35: 1026-37.
  • 5 Liebeskind DS. Collateral circulation. Stroke 2003; 34 (09) 2279-84.
  • 6 Okell TW. et al. A kinetic model for vessel-encoded dynamic angiography with arterial spin labeling. MRM 2012; 68: 969-79.
  • 7 Golay X, Hendrikse J, Lim TCC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 2004; 15 (01) 10-27.
  • 8 Buxton RB. et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383-96.
  • 9 Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology 2008; 248 (01) 20-43.
  • 10 Clorius S. et al. Nephrogenic systemic fibrosis following exposure to gadolinium-containing contrast agent. Clin Nephrol 2007; 68 (04) 249-52.
  • 11 Willinsky RA. et al. Neurologic complications of cerbral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 2003; 227 (02) 522-8.
  • 12 Helle M. et al. Superselective pseudocontinuous arterial spin labeling. Magn Reson Med 2010; 64: 777-86.
  • 13 van Laar PJ. et al. Brain perfusion territory imaging: methods and clinical applications of selective arterial spin labeling MR imaging. Radiology 2008; 246 (02) 354-64.
  • 14 van Laar PJ. et al. In vivo flow territory mapping of major brain feeding arteries. Neuroimage 2006; 29: 136-44.
  • 15 van der Zwan A. et al. Variability of the territories of the major cerebral arteries. J Neurosurg 1992; 77: 927-40.
  • 16 Hartkamp NS. et al. Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR Biomed. 2012 Jul 15; Epub ahead of print.
  • 17 Helle M. et al. Superselective arterial spin labeling applied for flow territory mapping in various cerebrovascular diseases. J Magn Reson Imaging. 2013 Mar 22; Epub ahead of print.
  • 18 Robson PM. et al. Time-resolved vessel-selective digital subtraction MR angiography of the cerebral vasculature with arterial spin labeling. Radiology 2010; 257 (02) 507-15.
  • 19 Hernandez-Garcia L. et al. Real-time functional MRI using pseudo-continuous arterial spin labeling. Magn Reson Med 2011; 65 (06) 1570-7.
  • 20 Fernández-Seara MA. et al. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 2005; 54 (05) 1241-47.
  • 21 Günther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: Inflow turbo-sampling EPI-FAIR (ITSFAIR). Magn Reson Med 2001; 46 (05) 974-84.
  • 22 Edelman RR. et al. Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 1994; 31 (02) 233-8.
  • 23 Okell TW. et al. Vessel-encoded dynamic magnetic resonance angiography using arterial spin labeling. Magn Reson Med 2010; 64 (02) 430-8.
  • 24 Sallustio F. et al. Assessment of intracranial collateral flow by using dynamic arterial spin labeling MRA and transcranial color-coded duplex ultrasound. Stroke 2008; 39 (06) 1894-97.
  • 25 Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003; 13 (11) 2409-18.
  • 26 Yan L. et al. Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. Radiology 2010; 256: 270-9.
  • 27 Ishimorie Y. et al. Time spatial labeling inversion pulse cerebral MR angiography without subtraction by use of dual inversion recovery background suppression. Radiol Phys Technol 2010; 04: 78-83.
  • 28 Helle M. et al. Dynamic non-contrast enhanced angiography based on superselective arterial spin labeling and compressed sensing. Proc Intl Soc Mag Reson Med 2012; 20: 3879.
  • 29 Helle M. et al. Superselective MR-angiography based on pseudo-continuous arterial spin labeling and first applications in AVM patients. Intl Soc Mag Reson Med 2011; 19: 650.
  • 30 Wheaton AJ, Miyazaki M. Non-Contrast Enhanced MR angiography: physical principles. JMRI 2012; 36: 286-304.
  • 31 Lin W. et al. Automated local maximum-intensity projection with three-dimensional vessel tracking. JMRI 1992; 02 (05) 591-26.
  • 32 Golay X. et al. Transfer insensitive labeling technique (TILT): Application to multislice functional perfusion imaging. J Magn Reson Imaging 1999; 09 (03) 454-61.
  • 33 Edelman RR. et al. Qualitative mapping of cerebral blood flow and functional localization with echoplanar MR imaging and signal targeting with alternating radio frequency. Radiology 1994; 192: 513-20.
  • 34 Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237-49.
  • 35 Kim SG, Tsekos NV. Perfusion imaging by a flowsensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med 1997; 37: 425-35.
  • 36 Wu WC. et al. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007; 58: 1020-27.
  • 37 Dai W. et al. Continuous flowdriven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 2008; 60: 1488-97.
  • 38 Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. MRM 2005; 53: 15-21.
  • 39 Trampel R. et al. Continuous arterial spin labeling using a local magnetic field gradient coil. Magn Reson Med 2002; 48 (03) 543-6.
  • 40 Werner R. et al. Brain perfusion territory imaging applying oblique-plane arterial spin labeling with a standard send/receive head coil. Magn Reson Med 2004; 52 (06) 1443-7.
  • 41 Helle M. et al. Perfusion territory imaging of intracranial branching arteries – optimization of continuous artery-selective spin labeling (CASSL). NMR Biomed 2011; 24: 404-12.
  • 42 Wong EC. Vessel-Encoded Arterial Spin-Labeling Using Pseudocontinuous. Tagging Magn Reson Med 2007; 58: 1086-91.
  • 43 Dai W. et al. Modified pulsed continuous arterial spin labeling for labeling of a single artery. Magn Reson Med 2010; 64: 975-82.
  • 44 Chappell MA. et al. A general framework for the analysis of vessel encoded arterial spin labeling for vascular territory mapping. MRM 2010; 64: 1529-39.
  • 45 Gevers S. et al. Robustness and reproducibility of flow territories defined by planning-free vessel-encoded pseudocontinuous arterial spin-labeling. AJNR 2012; 33 (02) E21-5.
  • 46 Wong EC, Guo J. Blind detection of vascular sources and territories using random vessel encoded arterial spin labeling. MAGMA 2012; 25: 95-101.
  • 47 Hartkamp NS. et al. Mixed cerebral perfusion territories in the posterior circulation investigated using super-selective arterial spin labeling MRI. Proc Intl Soc Mag Reson Med 2011; 19: 2089.
  • 48 Helle M. et al. Selective Multivessel Labeling Approach for Perfusion Territory Imaging in Pseudocontinuous Arterial Spin Labeling. Magn Reson Med 2012; 68 (01) 214-9.
  • 49 Hendrikse J. et al. Relation between cerebral perfusion territories and location of cerebral infarcts. Stroke 2009; 40 (05) 1617-22.
  • 50 Hartkamp NS. et al. Comparison of regional perfusion imaging between planning-free vessel-encoded and super-selective pseudo-continuous arterial spin labeling MRI. Proc Intl Soc Mag Reson Med 2012; 20: 3517.
  • 51 Bokkers RP. et al. Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR 2008; 29 (09) 1698-703.