Nervenheilkunde 2011; 30(08): 613-620
DOI: 10.1055/s-0038-1628402
Ulmer Heft
Schattauer GmbH

Hirngymnastik nach Plan

Gibt es ein Trainingsprogramm für effizientes Lernen?Brain gymcan we get a training schedule for efficient learning?
J. Kornmeier
1   Institut für Grenzgebiete der Psychologie und Psychohygiene
2   Universitäts-Augenklinik, Freiburg
,
Z. Sosic-Vasic
3   Transferzentrum für Neurowissenschaften und Lernen, Universitätsklinikum Ulm
› Author Affiliations
Further Information

Publication History

Eingegangen am: 20 April 2011

angenommen am: 13 May 2011

Publication Date:
23 January 2018 (online)

Zusammenfassung

Wiederholtes Lernen steigert bekanntlich die Gedächtnisleistung. Dabei ist zeitlich verteiltes Lernen effektiver als kurzfristige Lernmarathons. Weniger bekannt ist, dass es optimale zeitliche Abstände zwischen Lernwiederholungen gibt, die die Merkfähigkeit mehr als verdoppeln können (Spacing-Effekt). Gleichermaßen unbekannt ist, dass wenige aufeinanderfolgende Tests eines zuvor gelernten Inhalts zu einer vergleichbaren oder besseren Gedächtnisleistung führen als viele Wiederholungen (Testing-Effekt). Dabei sind zeitlich verteilte Tests besser als dicht aufeinander folgende (Test-Spacing-Effekt). Spacing- und Testing-Effekte sind stabil über ein breites Spektrum experimenteller Parameter. Neuere Arbeiten deuten auf einen nicht monotonen Zusammenhang zwischen Spacing-Intervall und Gedächtnisleistung hin: Spacing- und Testing-Effekte scheint es auf verschiedenen Zeitskalen des Lernens zu geben. Ferner scheint das optimale Spacing-Intervall vom zeitlichen Abstand zwischen der letzten Lerneinheit und dem abschließenden Test abzuhängen. Ein besseres Verständnis der beiden Effekten zugrunde liegenden Mechanismen kann zu effektiven und einfach anwendbaren Lernstrategien führen.

Summary

Repeated learning improves memory, as is well known. It may also be known that temporally distributed (spaced) learning is more efficient than massed learning. Widely unknown, however, may be the existence of optimal spacing intervals that can increase memory performance to more than twice the performance with massed learning. It is also widely unknown that tests are not only simple tools to check learning success. Instead, few consecutive tests of a previous learned content can lead to equal or even better memory performance than many repetitions of the same content (testing effect). If the tests are spaced in time, memory performance improves even more. Recent studies indicate a non-monotinic relation between spacing intervals and memory performance: Spacing and testing effects seem to exist on different time scales of learning. Further, the optimal spacing interval seems to depend on the time between the last learning unit and the final test. A better understanding of the basic principles of spacing and testing effects could be the base for easy and effective training schedules.

 
  • Literatur

  • 1 Roediger HL, Butler AC. The critical role of retrieval practice in long-term retention. Trends in cognitive sciences. 2010 Oct 14, E-pub ahead of print..
  • 2 Underwood BJ. A breakdown of total-time law in free-recall learning. J Verb Learn Verb Be 1970; 09: 573-80.
  • 3 Ebbinghaus H. Memory. New York: Teachers College; 1913
  • 4 Jost A. Die Assoziationsfestigkeit in ihrer Abhängigkeit von der Verteilung der Wiederholungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane 1897; 14: 436-72.
  • 5 Toppino TC, Bloom LC. The spacing effect, free recall, and two-process theory: a closer look. J Exp Psychol Learn Mem Cogn 2002; 28 (03) 437-44.
  • 6 Litman L, Davachi L. Distributed learning enhances relational memory consolidation. Learning & Memory 2010; 15 (09) 711-6.
  • 7 Dempster FN. Distributing and managing the conditions of encoding and practice. In: Bjork EL, Bjork RA. (eds.). Handbook of Perception and Cognition. New York: Academic Press; 1996
  • 8 Janiszewski C, Noel H, Sawyer AG. A meta-analysis of spacing effect in verbal learning: Implications for research on advertising repetition and consumer memory. Journal of Consumer Research 2003; 30: 138-49.
  • 9 Toppino TC, Hara Y, Hackman J. The spacing effect in the free recall of homogeneous lists: present and accounted for. Memory & cognition 2002; 30 (04) 601-6.
  • 10 Challis BH. Spacing effects on cued-memory tests depend on level of processing. J Exp Psychol Hum Learn Mem 1993; 19: 389-96.
  • 11 Rea CP, Modigliani V. The spacing effect in 4-to 9-year-old children. Memory & cognition 1987; 15 (05) 436-43.
  • 12 Toppino TC. The spacing effect in young children’s free recall: support for automatic-process explanations. Memory & cognition 1991; 19 (02) 159-67.
  • 13 Balota DA, Duchek JM, Paullin R. Age-related differences in the impact of spacing, lag, and retention interval. Psychology and aging 1989; 04 (01) 3-9.
  • 14 Mauelshagen J, Sherff CM, Carew TJ. Differential induction of long-term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica. Learning & memory 1998; 05 (03) 246-56.
  • 15 Yin JC, Del Vecchio M, Zhou H, Tully T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 1995; 81 (01) 107-15.
  • 16 Lattal KM. Trial and intertrial durations in Pavlovian conditioning: issues of learning and performance. J Exp Psychol Anim Behav Process 1999; 25 (04) 433-50.
  • 17 Melton AW. Teh situation with respect to the spacing of repetitions and memory. J Verb Learn Verb Behavior 1970; 09: 596-606.
  • 18 Kahana MJ, Howard MW. Spacing and lag effects in free recall of pure lists. Psychon Bull Rev 2005; 12 (01) 159-64.
  • 19 Cepeda NJ, Pashler H, Vul E, Wixted JT, Rohrer D. Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological bulletin 2006; 132 (03) 354-80.
  • 20 Cepeda NJ, Coburn N, Rohrer D, Wixted JT, Mozer MC, Pashler H. Optimizing distributed practice: theoretical analysis and practical implications. Experimental psychology 2009; 56 (04) 236-46.
  • 21 Cepeda NJ, Vul E, Rohrer D, Wixted JT, Pashler H. Spacing effects in learning: a temporal ridgeline of optimal retention. Psychol Sci 2008; 19 (11) 1095-102.
  • 22 Bacon F. Novum organum. Cambridge: University Press; 2000
  • 23 Roediger HL. The power of testing memory. Basic research and implications for educational practice. Perspect Psychol Sci 2006; 01 (03) 181-210.
  • 24 Allen GA, Mahler WA, Estes WK. Effects of recall tests on long-term retention of paired associates. J Verb Learn Verb Be 1969; 08: 463-70.
  • 25 Thompson CP, Wenger SK, Bartling CA. How recall facilitates subsequent recall: A reappraisal. Journal of Experimental Psychology: Learning, Memory and Cognition 1978; 04: 210-21.
  • 26 Roediger HL, Karpicke JD. Test-enhanced learning: taking memory tests improves long-term retention. Psychol Sci 2006; 17 (03) 249-55.
  • 27 Gates AI. Recitation as a factor in memorizing. Archives of Psychology. 1917 06. 40
  • 28 Wheeler MA, Ewers M, Buonanno JF. Different rates of forgetting following study versus test trials. Memory 2003; 11 (06) 571-80.
  • 29 Spitzer HF. Studies in retention. Journal of Educational Psychology 1939; 30: 641-56.
  • 30 Rea CP, Modigliani V. The effect of expanded versus massed practice on the retention of multiplication facts and spelling lists. Hum Learn 1985; 04: 11-8.
  • 31 Glover JA. The “testing” phenomenon: Not gone but nearly forgotten. Journal of Educational Psychology 1989; 81: 392-9.
  • 32 Anderson RC, Biddle WB. On asking people questions about what they are reading. In: Bower GH. editor. The psychology of learning and motivation: Advances in research and theory. New York: Academic Press; 1975
  • 33 Modigliani V. Effects on a later recall by delaying initial recall. Journal of Experimental Psychology: Learning, Memory and Cognition 1976; 02: 609-22.
  • 34 Butler AC, Roediger HL. Testing improves longterm retention in a simulated classroom setting. European Journal of Cognitive Psychology 2007; 19: 514-27.
  • 35 Butler AC. Repeated testing produces superior transfer of learning relative to repeated studying. J Exp Psychol Learn Mem Cogn 2010; 36 (05) 1118-33.
  • 36 Leeming FC. The exam-a-day procedure improves performance in psychology classes. Teaching of Psychology 2002; 29: 210-2.
  • 37 Bangert-Drowns RL, Kulik JA, Kulik CLC. Effects of frequent classroom testing. Journal of Educational Research 1991; 85: 89-99.
  • 38 Pyc MA, Rawson KA. Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory?. Journal of Memory and Language 2009; 60: 10.
  • 39 Karpicke JD, Roediger HL. The critical importance of retrieval for learning. Science 2008; 319 5865 966-8.
  • 40 Hattie J. Visible learning: a aynthesis of over 800 meta-analyses relating to achievement. 1. ed. Abingdon, Oxon: Routledge; 2009
  • 41 Kang SHK, McDermott KB, Roediger HL. Test format and corrective feedback modify the effect of testing on long-term retention. European Journal of Cognitive Psychology 2007; 19 (4/5): 528-58.
  • 42 Pashler H, Cepeda NJ, Wixted JT, Rohrer D. When does feedback facilitate learning of words?. J Exp Psychol Learn Mem Cogn 2005; 31 (01) 3-8.
  • 43 Krumboltz JD, Weisman RG. The effect of intermittent confirmation in programmed instruction. Journal of Educational Psychology 1962; 53: 250-3.
  • 44 Anderson RC, Kulhavy RW, Andre T. Conditions under which feedback facilitates learning from programmed lessions. Journal of Educational Psychology 1972; 63: 186-8.
  • 45 Butler AC, Roediger HL. Feedback enhances the positive effects and reduces the negative effects of multiple-choice testing. Memory & cognition 2008; 36 (03) 604-16.
  • 46 Metcalfe J, Kornell N, Finn B. Delayed versus immediate feedback in children’s and adults’ vocabulary learning. Memory & cognition 2009; 37 (08) 1077-87.
  • 47 Smith TA, Kimball DR. Learning from feedback: Spacing and the delay-retention effect. J Exp Psychol Learn Mem Cogn 2010; 36 (01) 80-95.
  • 48 Lynch MA. Long-term potentiation and memory. Physiological reviews 2004; 84 (01) 87-136.
  • 49 Abraham WC. How long will long-term potentiation last?. Philosophical transactions of the Royal Society of London 2003; 358 1432 735-44.
  • 50 Huang YY, Kandel ER. Recruitment of long-lasting and protein kinase adependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learning & Memory 1994; 01: 74-82.
  • 51 Abraham WC. et al. Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. The Journal of Neuroscience 2002; 22: 9626-34.
  • 52 Racine RJ. et al. Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation. Brain Research 1995; 702: 87-93.
  • 53 Bahrick HP, Phelps E. Retention of Spanish vocabulary over 8 years. Journal of Experimental Psychology: Learning, Memory, and Cognition 1987; 13: 344-9.
  • 54 Dempster FN. Effects of variable encoding and spaced presentations on vocabulary learning. Journal of Educational Psychology 1987; 79: 162-70.
  • 55 Thios SJ, D’Agostino PR. Effects of repetition as a function of study-phase retrieval. Journal of Verbal Learning and Verbal Behavior 1976; 15: 529-36.