Nervenheilkunde 2008; 27(04): 317-325
DOI: 10.1055/s-0038-1627256
Original- und Übersichtsarbeiten - Original and Review Articles
Schattauer GmbH

Die Glutamathypothese der Schizophrenie

The glutamate hypothesis of schizophrenia
J. Gallinat
1   Charité Universitätsmedizin Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Mitte (Klinikdirektor: Prof. Dr. A. Heinz)
,
Y. Gudlowski
1   Charité Universitätsmedizin Berlin, Klinik für Psychiatrie und Psychotherapie, Campus Mitte (Klinikdirektor: Prof. Dr. A. Heinz)
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen am: 10. Januar 2008

angenommen am: 13. Januar 2008

Publikationsdatum:
19. Januar 2018 (online)

Zusammenfassung

Die Dopaminhypothese hat die Erforschung der Schizophrenie über Jahrzehnte geprägt und ist das Haupterklärungsmodell der aktuellen Pharmakotherapie. Darüber hinaus gibt es eine Vielzahl von Hinweisen, dass eine Störung des Glutamatsystems eine bedeutende Rolle in der Pathobiologie der Schizophrenie spielt. Pharmakologische Expositionsversuche mit NMDA-Rezeptorantagonisten induzieren Schizophrenie-ähnliche Bilder mit Positivsymptomen, Negativsymptomen, kognitiven Störungen sowie Veränderungen der Hirnperfusion. In Tierexperimenten zeigt sich neuronale Degeneration nach Applikation von NMDA-Rezeptorantagonisten, die den histopathologischen Veränderungen bei Schizophrenie ähneln. Neue Entwicklungen in der in-vivo-Messung von Glutamat erbringen zudem experimentelle Hinweise für einen veränderten Glutamatgehalt zerebraler Strukturen bei Schizophrenie. Neue Therapieansätze in der Pharmakotherapie zeigen eine Wirksamkeit von Glutamat-aktiven Substanzen auf Positiv- und Negativsymptome bei Schizophrenie und konstituieren möglicherweise eine neue Ära der Schizophreniebehandlung jenseits der Therapie durch Dopamin-Rezeptorantagonisten.

Summary

The dopamine hypothesis has guided schizophrenia research for decades and represents the prime explanation model for the current pharmacotherapy. However, several lines of evidence indicate that a dysfunction of the glutamate system plays a major role in the pathobiology of schizophrenia. Pharmacological challenges with NMDA receptor antagonists mimic schizophrenic psychopathology including negative symptoms and cognitive dysfunction as well as alterations in cerebral perfusion. Animal experiments indicate delayed neuronal degeneration after exposition to NMDA receptor antagonists showing similarities with histological abnormalities in schizophrenia. New techniques for in vivo measurement of cerebral glutamate have provided experimental evidence for abnormal glutamate levels in schizophrenia. Evidence for glutamate dysfunctions in schizophrenia is complementary to the dopamine hypothesis, because both systems are closely connected and interact in a complex way. Recently, novel therapeutic agents acting via glutamatergic mechanisms have been found to improve positive and negative symptoms in schizophrenia in a clinically relevant dimension which may constitute a new era of pharmacotherapy beyond dopamine receptor antagonism.

 
  • Literatur

  • 1 Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 2002; 22 (Suppl. 09) 3708-3719.
  • 2 Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 2000; 97 (Suppl. 14) 8104-8109.
  • 3 Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas P. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neuroscience 2002; 22: 9134-9141.
  • 4 Théberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B, Densmore M, Al-Semaan Y, Williamson PC. Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 2002; 159 (Suppl. 11) 1944-1946.
  • 5 Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, Frank JA, Pickar D, Weinberger DR. The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 2000; 22 (Suppl. 02) 125-132.
  • 6 Bilder RM, Bogerts B, Ashtari M, Wu H, Alvir JM, Jody D, Reiter G, Bell L, Lieberman JA. Anterior hippocampal volume reductions predict frontal lobe dysfunction in first episode schizophrenia. Schizophr Res 1995; 17 (Suppl. 01) 47-58.
  • 7 Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D. Association of ketamine-induced psy- chosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry 1997; 154: 805-811.
  • 8 Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia--therapeutic implications. Biol Psychiatry 1999; 46 (Suppl. 10) 1388-1395.
  • 9 Dolan RJ, Fletcher P, Frith CD, Friston KJ, Frackowiak RS, Grasby PM. Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 1995; 378: 180-182.
  • 10 Ehlers CL, Kaneko WM, Wall TL, Chaplin RI. Effects of dizocilpine (MK-801) and ethanol on the EEG and event- related potentials (ERPS) in rats. Neuropharmacology 1992; 31: 369-378.
  • 11 Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci 1986; 236: 154-161.
  • 12 Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?. J Psychiatr Res 1982-1983 17 (Suppl. 04) 319-334
  • 13 Frankle WG, Laruelle M, Haber SN. Prefrontal cortical projections to the midbrain in primates: Evidence for a sparse connection. Neuropsychopharmacol 2006; 31: 1627-1636.
  • 14 Gallinat J, Mulert C, Bajbouj M, Herrmann WM, Schunter J, Senkowski D, Muchtieva R, Kronfeldt D, Winterer G. Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. Neuroimage 2002; 17: 110-127.
  • 15 Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF, Goldman D, Winterer G. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 2003; 54 (Suppl. 01) 40-48.
  • 16 Gallinat J, Gotz T, Kalus P, Bajbouj M, Sander T, Winterer G. Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans. J Cogn Neurosci 2007; 19 (Suppl. 01) 59-68.
  • 17 Gallinat J, Kunz D, Lang UE, Neu P, Kassim N, Kienast T, Seifert F, Schubert F, Bajbouj M. Association between cerebral glutamate and human behaviour: The sensation seeking personality trait. Neuroimage 2007; 34: 671-678.
  • 18 Gallinat J, Kunz D, Senkowski D, Kienast T, Seifert F, Schubert F, Heinz A. Hippocampal glutamate concentration predicts cerebral theta oscillations during cognitive processing. Psychopharmacology 2006; 187 (Suppl. 01) 103-111.
  • 19 Gallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T, Witthaus H, Leopold K, Seifert F, Schubert F, Staedtgen M. Smoking and structural brain deficits: A volumetric MR investigation. Eur J Neurosci 2006; 24: 1744-1750.
  • 20 Gallinat J, Obermayer K, Heinz A. Systems neurobiology of the dysfunctional brain: schizophrenia. Pharmacopsychiatry 2008 in press.
  • 21 Gallinat J, Schubert F. Regional cerebral glutamate concentrations and chronic tobacco consumption. Pharmacopsychiatry 2007; 40 (Suppl. 02) 64-67.
  • 22 Gallinat J. Einfluss von Neuregulin 1 auf zerebrale Funktion, Kognition und Neurochemie bei Schizophrenie. Vortrag DGPPN Kongress Berlin 2007
  • 23 Goff DC, Tsai G, Beal MF, Coyle JT. Tardive dyskinesia and substrates of energy metabolism in CSF. Am J Psychiatry 1995; 152: 1730-1736.
  • 24 Goff DC, Tsai G, Manoach DS, Coyle JT. Dosefinding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 1995; 152: 1213-1215.
  • 25 Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC, Johnson SA, Lynch G. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 2001; 21 (Suppl. 05) 484-487.
  • 26 Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J, Manschreck T, Freudenreich O, Johnson SA. A Placebo-Controlled Add-On Trial of the Ampakine, CX516, for Cognitive Deficits in Schizophrenia. Neuropsychopharmacology 2007 (Epub ahead of print).
  • 27 Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004; 174 (Suppl. 01) 151-162.
  • 28 Harrison PJ, Law AJ, Eastwood SL. Glutamate receptor and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 2003; 94-101.
  • 29 Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56: 29-36.
  • 30 Jackson ME, Homayoun H, Moghaddam B. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. PNAS 2004; 101: 8467-8472.
  • 31 Javitt DC, Jayachandra M, Lindsley RW, Specht CM, Schroeder CE. Schizophrenia-like deficits in auditory P1 and N1 refractoriness induced by the psychomimetic agent phencyclidine (PCP). Clin Neurophysiol 2000; 111: 833-836.
  • 32 Kerwin R, Patel S, Meldrum B. Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 1990; 39: 25-32.
  • 33 Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 1980; 20: 379-382.
  • 34 Kornhuber HH, Kornhuber J, Kim JS, Kornhuber ME. A biochemical theory of schizophrenia. Nervenarzt 1984; 55 (Suppl. 11) 602-606.
  • 35 Lipska BK, Weinberger DR. Prefrontal cortical and hippocampal modulation of dopamine-mediated effects. Adv Pharmacol 1998; 42: 806-809.
  • 36 Malhotra AK. et al. Clozapine blunts N-methyl- D-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 1997; 42: 664-668.
  • 37 Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002; 5 (Suppl. 03) 267-271.
  • 38 Montag C, Schubert F, Heinz A, Gallinat J. Prefrontal Cortex Glutamate Correlates with Cognitive Empathy. Schizophrenia Res 2008 in press.
  • 39 Neuhaus AH, Bajbouj M, Kienast T, Kalus P, von Haebler D, Winterer G, Gallinat J. Persistent dysfunctional frontal lobe activation in former smokers. Psychopharmacology 2006; 186 (Suppl. 02) 191-200.
  • 40 Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 1999; 20: 106-118.
  • 41 Nieuwenstein MR, Aleman A, de Haan EH. Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: a metaanalysis of WCST and CPT studies. Wisconsin Card Sorting Test. Continuous Performance Test. J Psychiatr Res 2001; 35 (Suppl. 02) 119-125.
  • 42 Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998-1007.
  • 43 Oranje B, van Berckel BN, Kemner C, van Ree JM, Kahn RS, Verbaten MN. The effects of a subanaesthetic dose of ketamine on human selective attention. Neuropsychopharmacology 2000; 22: 293-302.
  • 44 Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007; 13 (Suppl. 09) 1102-1107.
  • 45 Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, Hays AP, Dwork AJ. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 2000; 57 (Suppl. 04) 349-356.
  • 46 Sabri O, Erkwoh R, Schreckenberger M, Cremerius U, Schulz G, Dickmann C, Kaiser HJ, Steinmeyer EM, Sass H, Buell U. Regional cerebral blood flow and negative/positive symptoms in 24 drug- naive schizophrenics. J Nucl Med 1997; 38: 181-188.
  • 47 Schousboe A. Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 1981; 22: 1-45.
  • 48 Schubert F, Gallinat J, Seifert F, Rinneberg H. Glutamate concentrations in the human brain using single voxel proton magnetic resonance spectrscopy at 3 Tesla. Neuroimage 2004; 24: 1762-1771.
  • 49 Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49 1–2 1-52.
  • 50 Tebartz van Elst L, Valerius G, Büchert M, Thiel T, Rüsch N, Bubl E, Henning J, Ebert D, Olbrich HM. Increased prefrontal and hippocampal glutamate concentration in schizophrenia: Evidence from a magnetic resonance spectroscopy study. Biol Psychiatry 2005; 58: 724-730.
  • 51 Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 1998; 155: 1207-1213.
  • 52 Tsai G, Yang P, Chung LC, Lange N, Coyle JT. D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44: 1081-1089.
  • 53 Ulas J, Brunner LC, Geddes JW, Choe W, Cotman CW. N-methyl-D-aspartate receptor complex in the hippocampus of elderly, normal individuals and those with Alzheimer’s disease. Neuroscience 1992; 49: 45-61.
  • 54 Vollenweider FX, Leenders KL, Oye I, Hell D, Angst J. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 1997; 7: 25-38.
  • 55 Weinberger DR, McClure RK. Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: what is happening in the schizophrenic brain?. Arch Gen Psychiatry 2002; 59 (Suppl. 06) 553-558.
  • 56 Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44 (Suppl. 07) 660-669.
  • 57 West AR, Grace AA. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 2002; 22 (Suppl. 01) 294-304.
  • 58 Willner P. The dopamine hypothesis of schizophrenia: current status, future prospects. Int Clin Psychopharmacol 1997; 12 (Suppl. 06) 297-308.
  • 59 Winterer G, Musso F, Beckmann C, Mattay V, Egan MF, Jones DW, Callicott JH, Coppola R, Weinberger DR. Instability of prefrontal signal processing in schizophrenia. Am J Psychiatry 2006; 163 (Suppl. 11) 1960-1968.
  • 60 Kegeles LS. et al. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 2000; 48: 627-640.