Nervenheilkunde 2007; 26(11): 993-998
DOI: 10.1055/s-0038-1626952
Arbeiten zum Schwerpunkt - Theme Articles
Schattauer GmbH

Mechanismen der Pharmakoresistenz

Mechanisms of pharmacoresistance
H. Potschka
1   Institut für Pharmakologie, Toxikologie und Pharmazie, Ludwig-Maximilians-Universität München (Leiter: Prof. Dr. H. Potschka)
› Author Affiliations
Further Information

Publication History

Publication Date:
19 January 2018 (online)

Zusammenfassung

Trotz der Einführung neuer Antiepileptika erweisen sich weiterhin etwa ein Drittel der Epilepsiepatienten als pharmakoresistent. Die Pharmakoresistenz kann dabei von Beginn der Erkrankung an ausgeprägt sein oder sich im weiteren Verlauf entwickeln. Von der Aufklärung der zu Grunde liegenden Mechanismen verspricht man sich Erkenntnisse, die in der Entwicklung neuer Antiepileptika genutzt werden können und eine Basis für die Entwicklung von neuen therapeutischen Strategien zur Überwindung der Pharmakoresistenz bilden. Untersuchungen der vergangenen Jahre haben Hinweise dafür erbracht, dass Arzneimitteltransportsysteme an der Blut-Hirn-Schranke bei pharmakoresistenten Patienten erhöhte Expressionsraten aufweisen und durch einen Auswärtstransport von Antiepileptika deren Wirksamkeit einschränken können. Zudem konnten epilepsieassoziierte Veränderungen an verschiedenen Zielstrukturen von Antiepileptika nachgewiesen werden, die den Effekt der Antiepileptika limitieren. Zukünftige Untersuchungen müssen zeigen, ob die neuen Erkenntnisse für eine Optimierung der therapeutischen Situation genutzt werden können.

Summary

Despite the launch of a series of new antiepileptic drugs, epilepsy in about one third of the patient population is considered to be pharmacoresistant. Thereby, pharmacoresistance can exist with onset of the disease, but can also develop with progression of epilepsy. The analysis of the underlying mechanisms promises findings that can be used for the development of new antiepileptic drugs, and can be used for the development of new therapeutic strategies to overcome pharmacoresistance. Research during the last years indicates that multidrug transporters at the bloodbrain barrier are overexpressed in pharmacoresistant patients and can mediate efflux of antiepileptic drugs, thereby restricting their efficacy. Furthermore epilepsy-associated changes have been detected in antiepileptic drug target structures, which can limit the drug effect. Future investigations have to clarify, whether the findings can be used for the optimization of the therapeutic situation.

 
  • Literatur

  • 1 Abbott NJ, Khan EU, Rollinson CMS, Reichel A, Janigro D, Dombrowski SM, Dobbie MS, Begley DJ. Drug resistance in epilepsy: the role of the blood-brain barrier. In: Ling V. (Hrsg). Mechanisms of drug resistance in epilepsy. Lessons from oncology, Chichester: Wiley; 2002
  • 2 Aronica E, Gorter JA, Ramkema M, Redeker S, Ozbas-Gercerer F, van Vliet EA, Scheffer GL, Scheper RJ, van der Valk P, Baayen JC, Troost D. Expression and cellular distribution of multidrug resistance-related proteins in the Hippokampus of patients with mesial temporal lobe epilepsy. Epilepsia 2004; 05: 441-451.
  • 3 Aronica E, Gorter JA, Redeker S, van Vliet EA, Ramkema M, Scheffer GL, Scheper RJ, van derValk P, Leestra S, Baayen JC, Spiliet WG, Troost D. Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 2005; 46: 849-857.
  • 4 Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Löscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 2007; 52: 333-346.
  • 5 Baltes S, Luna CTortos, Fedrowitz M, Potschka H, Löscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance protein MRP1 and MRP2 in a number of in vitro and in vivo transport assays. J Pharm Exp Ther 2007; 320: 331-343.
  • 6 Brandt C, Bethmann K, Gastens AM, Löscher W. The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 2006; 24: 202-211.
  • 7 Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 1998; 04: 1166-1172.
  • 8 Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y. Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J Pharm Exp Ther 2005; 314: 725-731.
  • 9 Cohen AS, Lin DD, Quirk GL, Coulter DA. Dentate granule cell GABA(A) receptors in epileptic Hippokampus: enhanced synaptic efficacy and altered pharmacology. Eur J Neurosci 2003; 17: 1607-1616.
  • 10 Coulter DA. Mossy fiber zinc and temproal lobe epilepsy: pathological association with altered „epileptic” gamma-aminobutyric acid A receptors in dentate granule cells. Epilepsia 2000; 41 (Suppl. 06) S96-99.
  • 11 Coulter DA. Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function and inhibitory synaptic properties. Int Rev Neuorobiol 2001; 45: 237-252.
  • 12 Crowe A, Teoh YK. Limited P-glycoprotein mediated efflux of antiepileptic drugs. J Drug Target 2006; 14: 291-300.
  • 13 Duncan R, Todd N. Epilepsy and the blood-brain barrier. BrJ Hosp Med 1991; 45: 32-34.
  • 14 Ellerkmann RK, Remy S, Chen J, Sochicko D, Elger CE, Urban BW, Becker A, Beck H. Molecular and functional changes in voltage dependent Na+ channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience 2003; 119: 323-333.
  • 15 Hoffmann K, Löscher W. Up-regulation of brain expression of P-glycoprotein in MRP2-deficient TR-rats resembles seizure-induced up-regulation of this drug efflux transporter in normal rats. Epilepsia 2007; 48: 631-645.
  • 16 Iannetti P, Spalice A, Parisi P. Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsie 2005; 46: 967-969.
  • 17 Jeub M, Beck H, Siep E, Rüschenschmidt C, Speckmann EJ, Ebert U, Potschka H, Freichel C, Reissmüller E, Löscher W. Effect of phenytoin on sodium and calcium currents in hippocampal CA1 neurons of phenytoin resistant rats. Neuropharmacology 2002; 42: 107-116.
  • 18 Kapur J, Macdonald RL. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci 1997; 17: 7532-7540.
  • 19 Kwan P, Brodie MJ. Refractory epilepsy a progressive, intractable but preventable condition?. Seizure 2002; 11: 77-84.
  • 20 Löscher W. Mechanisms of drug resistance. Epileptic Disord 2005; 07: S3-S9.
  • 21 Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005; 06: 591-602.
  • 22 Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005; 76: 22-76.
  • 23 Macdonald Rl, Kapur J. Acute cellular alterations in the hippocampus after status epilepticus. Epilepsia 1999; 40 (Suppl. 01) S9-20.
  • 24 Marchi N, Guiso G, Rizzi M, Pirker S, Novak K, Czech T, Baumgartner C, Janigro D, Caccia S, Vezzani A. A pilot study on brain-to-plasma partition of 10,11-dihydro-10 hydroxy-5H-dibenzo(b,f)azepine-5-carboxamide and MDR1 brain expression in epilepsy patients not responding to oxcarbazepine. Epilepsia 2005; 46: 1613-1619.
  • 25 Owen A, Pirmohamed M, Tettey JN, Morgan P, Chadwick D, Park K. Carbamazepine is not a substrate for P-glycoprotein. Br J Clin Pharmacol 2001; 51: 345-349.
  • 26 Potschka H, Löscher W. A comparison of extracellular levels of phenytoin in amygdala and Hippokampus of kindled and non-kindled rats. Neuroreport 2002; 13: 167-171.
  • 27 Potschka H, Volk HA, Löscher W. Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats. Neuroreport 2004; 15: 1657-1661.
  • 28 Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, Heinemann U, Beck H. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 2003; 53: 469-479.
  • 29 Remy S, Urban BW, Elger CE, Beck H. Anticonvulsant pharmacology of voltage-gated Na+ channels in hippocampal neurons of control and chronically epileptic rats. Eur J Neuroscience 2003; 17: 2648-2658.
  • 30 Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 2006; 129: 18-35.
  • 31 Rizzi M, Caccia S, Guiso G, Richichi C, Gorter JA, Aronica E, Aliprandi M, Bagnati R, Fanelli R, D’Incalci M, Samanin R, Vezzani A. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci 2002; 22: 5833-5839.
  • 32 Schmidt D, Loscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 2005; 46: 858-877.
  • 33 Sisodiya SM, Heffernan J, Squier MV. Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport 1999; 10: 3437-3441.
  • 34 Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 2002; 125: 22-31.
  • 35 Sisodiya SM. Mechanisms of antiepileptic drug resistance. Curr Opin. Neurol 2003; 16: 197-201.
  • 36 Summers MA, Moore JL, McAuley JW. Use of Verapamil as a Potential P-Glycoprotein Inhibitor in a Patient with Refractory Epilepsy. Ann Pharmacother 2004; 38: 1631-1634.
  • 37 Tan NC, Heron SE, Scheffer IE, Pelekanos JT, McMahon JM, Vears DF, Mulley JC, Berkovic SF. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology 2004; 63: 1090-1092.
  • 38 Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with intractable epilepsy. Epilepsia 1995; 36: 1-6.
  • 39 Van Vliet EA, Redeker S, Aronica E, Edelbroek PM, Gorter JA. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 2005; 46: 1569-1580.
  • 40 Van Vliet EA, van Schaik R, Edelbroek PM, Redeker S, Aronica E, Wadman WJ, Vezzani A, Gorter JA. Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytointreated chronic epileptic rats. Epilepsia 2006; 47: 672-680.
  • 41 Volk HA, Burkhardt K, Potschka H, Chen J, Becker A, Löscher W. Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures. Neuroscience 2004; 123: 751-759.
  • 42 Volk H, Löscher W. Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain 2005; 128: 1358-1368.
  • 43 Volk HA, Arabadzisz D, Fritschy JM, Brandt C, Bethmann K, Löscher W. Antiepileptic drug-resistant rats differ from drug-responsive rats in hippocampal neurodegeneration and GABA(A) receptor ligand binding in a model of temporal lobe epilepsy. Neurobiol Dis 2006; 21: 633-646.
  • 44 Vreugdenhil M, van Veelen CWM, van Rijen PC, Lopes FHda Silva, Wadman W. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmacoresistant temporal lobe epilepsy. Epilepsy Res 1998; 32: 309-320.