Nuklearmedizin 2010; 49(S 01): S16-S20
DOI: 10.1055/s-0038-1626529
Übersichtsarbeit
Schattauer GmbH

Das Tumormikromilieu

Metabolic micromilieu in tumours
W. Mueller-Klieser
1   Institut für Physiologie und Pathophysiologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz
› Author Affiliations
Further Information

Publication History

Eingegangen: 22 September 2010

angenommen: 22 September 2010

Publication Date:
02 February 2018 (online)

Summary

Solid malignant tumours are characterized by a heterogeneous metabolic micromilieu with the intra-individual variability within single tumours being substantially smaller than the inter-individual differences between tumours. Despite this variability, there are some hallmarks which are characteristic for the majority of malignancies. They include hypoxia, tissue acidosis, and abnormal microcirculation. Peculiarities of the carbohydrate metabolism and specifically of glycolysis in tumours receive increasing attention in experimental and clinical research.

As shown by our research with induced bioluminescence, different tumours from various entities exhibit a large spectrum of lactate accumulation. Interestingly, primary lesions with metastasis contain significantly higher amounts of lactate as compared to non-metastatic tumours. Classification into high and low lactate tumours according to the median lactate concentration in combination with a Kaplan-Meier analysis reveals that survival of patients with high lactate tumours is significantly worse than that with low lactate carcinomas. Furthermore, there is a positive correlation between tumour lactate content and radio-resistance. Conclusion: High lactate tumours are characterized by a higher degree of malignancy and therapeutic resistance.

Zusammenfassung

Solide maligne Tumoren haben ein sehr heterogenes metabolisches Mikromilieu, wobei die intra-individuelle Variabilität einzelner Tumoren meist wesentlich kleiner ist als die inter-individuellen Unterschiede verschiedener Malignome. Trotz dieser Variabilität lassen sich einige für Tumoren typische Merkmale feststellen, die in der Mehrzahl der Erkrankungen auftreten. Dazu zählen Hypoxie, Gewebe – azidose und abnormale Mikrozirkulation. Seit einigen Jahren finden die Besonderheiten des Kohlenhydratstoffwechsels in Tumoren und besonders die Tumorglykolyse in der experimentellen und klinischen Forschung wachsende Beachtung.

Wie eigene Untersuchungen mit induzierter Biolumineszenz ergaben, zeigen viele Tumoren aus unterschiedlichen Entitäten eine sehr variable Anreicherung von Laktat. Dabei enthalten bereits metastasierte Primärläsionen signifikant mehr Laktat als Tumoren ohne Metastasen. Eine Klassifikation nach dem medianen Laktatgehalt in Hoch- und Niedriglaktat-Tumoren sowie eine Kaplan-Meier-Überlebensanalyse zeigen, dass Patienten mit Hoch lakat-Tumoren eine signifikant niedrigere Überlebensrate aufweisen im Vergleich zu denen mit Niedriglaktat-Karzinomen. Die Anreicherung von Laktat in Tumoren ist außerdem positiv mit der Strahlenresistenz korreliert. Schlussfolgerung: Hochglykolytische, Laktat-akkumulierende Tumoren weisen einen hohen Malignitätsgrad und eine große Therapieresistenz auf.

 
  • Literatur

  • 1 Albers MJ, Bok R, Chen AP. et al. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 2008; 68: 8607-8615.
  • 2 Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 2004; 84: 1014-1020.
  • 3 Bonnet S, Archer SL, lalunis-Turner J. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007; 11: 37-51.
  • 4 Brizel DM, Schroeder T, Scher RL. et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2001; 51: 349-353.
  • 5 Chang SM, Nelson S, Vandenberg S. et al. Integration of preoperative anatomic and metabolic physiologic imaging of newly diagnosed glioma. J Neurooncol 2009; 92: 401-415.
  • 6 Deberardinis RJ. Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 2008; 10: 767-777.
  • 7 Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472-482.
  • 8 Kurhanewicz J, Bok R, Nelson SJ. et al. Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 2008; 49: 341-344.
  • 9 Lin X, Zhang F, Bradbury CM. et al. 2-Deoxy-D-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res 2003; 63: 3413-3417.
  • 10 Mazurek S. Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2010 doi: 10.1016/j.biocel.2010.02.005.
  • 11 Mazurek S, Boschek CB, Hugo F. et al. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 2005; 15: 300-308.
  • 12 Quennet V, Yaromina A, Zips D. et al. Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol 2006; 81: 130-135.
  • 13 Raizer JJ, Koutcher JA, Abrey LE. et al. Proton magnetic resonance spectroscopy in immunocompetent patients with primary central nervous system lymphoma. J Neurooncol 2005; 71: 173-180.
  • 14 Sattler UG, Hirschhaeusera F, Mueller-Klieser WF. Manipulation of glycolysis in malignant tumors: fantasy or therapy?. Curr Med Chem 2010; 17: 96-108.
  • 15 Sattler UG, Meyer SS, Quennet V. et al. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol 2010; 94: 102-109.
  • 16 Sattler UG, Mueller-Klieser W. The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 2009; 85: 963-971.
  • 17 Schwickert G, Walenta S, Sundfor K. et al. Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 1995; 55: 4757-4759.
  • 18 Toyooka M, Kimura H, Uematsu H. et al. Tissue characterization of glioma by proton magnetic resonance spectroscopy and perfusion-weighted magnetic resonance imaging: glioma grading and histological correlation. Clin Imaging 2008; 32: 251-258.
  • 19 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029-1033.
  • 20 Walenta S, Chau TV, Schroeder T. et al. Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists?. J Cancer Res Clin Oncol 2003; 129: 321-326.
  • 21 Walenta S, Mueller-Klieser WF. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 2004; 14: 267-274.
  • 22 Walenta S, Salameh A, Lyng H. et al. Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 1997; 150: 409-415.
  • 23 Walenta S, Schroeder T, Mueller-Klieser W. Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 2004; 11: 2195-2204.
  • 24 Walenta S, Wetterling M, Lehrke M. et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 2000; 60: 916-921.
  • 25 Yaromina A, Quennet V, Zips D. et al. Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int J Radiat Biol 2009; 85: 972-980.
  • 26 Ziebart T, Walenta S, Kunkel M. et al. Metabolic and proteomic differentials in head and neck squamous cell carcinomas and normal gingival tissue. J Cancer Res Clin Oncol. 2010 doi: 10.1007/s00432-010-0875-y.