Nervenheilkunde 2003; 22(07): 354-358
DOI: 10.1055/s-0038-1626312
Original- und Übersichtsarbeiten/Original and Review Articles
Schattauer GmbH

TMS: Neue Einsatzmöglichkeiten in der neurophysiologischen Charakterisierung von Psychopharmaka und der biologischen Phänotypisierung psychischer Erkrankungen

Transcranial magnetic stimulation: New possibilities in characterizing central acting drugs and in phenotyping psychiatric diseases
P. Eichhammer
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg, Universitätsstrasse 84, 93053 Regensburg (Direktor: Prof. Dr. H. E. Klein)
,
B. Langguth
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg, Universitätsstrasse 84, 93053 Regensburg (Direktor: Prof. Dr. H. E. Klein)
,
A. Kharraz
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg, Universitätsstrasse 84, 93053 Regensburg (Direktor: Prof. Dr. H. E. Klein)
,
R. Wiegand
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg, Universitätsstrasse 84, 93053 Regensburg (Direktor: Prof. Dr. H. E. Klein)
,
G. Hajak
1   Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg, Universitätsstrasse 84, 93053 Regensburg (Direktor: Prof. Dr. H. E. Klein)
› Author Affiliations
Further Information

Publication History

Publication Date:
18 January 2018 (online)

Zusammenfassung

Zwei Aspekte der transkraniellen Magnetstimulation (TMS) finden zunehmend Einzug in die Psychiatrie. Zum einen die repetitive transkranielle Magnetstimulation (rTMS) zur Behandlung psychischer Erkrankungen, zum anderen die diagnostische Variante des Verfahrens. Methodische Erweiterungen dieser diagnostisch ausgerichteten TMS eröffnen die Möglichkeit, schmerzfrei und nichtinvasiv die kortikale Exzitabilität des motorischen Systems zu messen. Damit lassen sich neue Erkenntnisse zur Wirkungsweise von Psychopharmaka gewinnen. Besonders interessant erscheint zudem die Möglichkeit der biologischen Phänotypisierung mittels dieses Verfahrens. Hierbei lassen sich so genannte neurophysiologische Endophänotypen definieren, die zum Teil genetisch determiniert sind.

Summary

Two aspects of transcranial magnetic stimulation (TMS) gain increasing importance in the field of psychiatry. The repetitive transcranial magnetic stimulation (rTMS) as a promising method for treating neuropsychiatric diseases like depression as well as the diagnostic variant of TMS. Methodological improvement of this diagostic variant offer the possibility to measure aspects of cortical excitability painlessly and non-invasively. Using this neurophysiological tool, new insights into the effects of central-acting drugs are possible. Particularly striking seems to be the potential of this approach for use in biological phenotyping. TMS seems to detect neurophysiological endophenotypes that may be the result of genetic variations.

 
  • Literatur

  • 1 Abarbanel JM, Lemberg T, Yaroslavski U, Grisaru N, Belmaker RH. Electrophysiological responses to transcranial magnetic stimulation in depression and schizophrenia. Biol Psychiatry 1996; 40 (02) 148-50.
  • 2 Abbruzzese G, Buccolieri A, Marchese R, Trompetto C, Mandich P, Schieppati M. Intracortical inhibition and facilitation are abnormal in Huntington’s disease: a paired magnetic stimulation study. Neurosci Lett 1997; 228 (02) 87-90.
  • 3 Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 1995; 65 (03) 1157-65.
  • 4 Barker AT, Freeston IL, Jabinous R, Jarratt JA. Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain. Lancet 1986; 01 (8493): 1325-6.
  • 5 Bolden-Watson C, Richelson E. Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes. Life Sci 1993; 52 (12) 1023-9.
  • 6 Catano A, Houa M, Caroyer JM, Ducarne H, Noel P. Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalogr Clin Neurophysiol 1996; 101 (03) 233-9.
  • 7 Chen R, Samii A, Canos M, Wassermann EM, Hallett M. Effects of phenytoin on cortical excitability in humans. Neurology 1997; 49 (03) 881-3.
  • 8 Claus D, Weis M, Jahnke U, Plewe A, Brunholzl C. Corticospinal conduction studied with magnetic double stimulation in the intact human. J Neurol Sci 1992; 111 (02) 180-8.
  • 9 Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P. et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 2000; 111 (05) 794-9.
  • 10 Eichhammer P, Langguth B, Wiegand R, Kharraz A, Frick U, Hajak G. Allelic variation in the serotonin transporter promoter affects neuromodulatory effects of a selective serotonin transporter reuptake inhibitor (SSRI). Psychopharmacology. in press..
  • 11 Fallgatter AJ, Jatzke S, Bartsch AJ, Hamelbeck B, Lesch KP. Serotonin transporter promoter polymorphism influences topography of inhibitory motor control. Int J Neuropsychopharmcol 1999; 02 (02) 115-20.
  • 12 Fitzgerald PB, Brown TL, Daskalakis ZJ, Kulkarni J. A transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia. Psychiatry Res 2002; 114 (01) 11-22.
  • 13 Greenberg BD, Ziemann U, Cora-Locatelli G, Harmon A, Murphy DL, Keel JC. et al. Altered cortical excitability in obsessive-compulsive disorder. Neurology 2000; 54 (01) 142-7.
  • 14 Herwig U, Brauer K, Connemann B, Spitzer M, Schonfeldt-Lecuona C. Intracortical excitability is modulated by a norepinephrine-reuptake inhibitor as measured with paired-pulse transcranial magnetic stimulation. Psychopharmacology (Berl) 2002; 164 (02) 228-32.
  • 15 Höppner J, Kunesch E, Grossmann A, Tolzin CJ, Schulz M, Schlafke D. et al. Dysfunction of transcallosally mediated motor inhibition and callosal morphology in patients with schizophrenia. Acta Psychiatr Scand 2001; 104 (03) 227-35.
  • 16 Ilic TV, Korchounov A, Ziemann U. Complex modulation of human motor cortex excitability by the specific serotonin re-uptake inhibitor sertraline. Neurosci Lett 2002; 319 (02) 116-20.
  • 17 Inghilleri M, Berardelli A, Marchetti P, Manfredi M. Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans. Exp Brain Res 1996; 109 (03) 467-72.
  • 18 Liepert J, Schwenkreis P, Tegenthoff M, Malin JP. The glutamate antagonist riluzole suppresses intracortical facilitation. J Neural Transm 1997; 104 (11-12) 1207-14.
  • 19 Moll GH, Heinrich H, Trott G, Wirth S, Rothenberger A. Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci Lett 2000; 284 (1-2): 121-5.
  • 20 Pascual-Leone A, Manoach DS, Birnbaum R, Goff DC. Motor cortical excitability in schizophrenia. Biol Psychiatry 2002; 52 (01) 24-31.
  • 21 Plewnia C, Bartels M, Cohen L, Gerloff C. Noradrenergic modulation of human cortex excitability by the presynaptic alpha(2)-antagonist yohimbine. Neurosci Lett 2001; 307 (01) 41-4.
  • 22 Plewnia C, Hoppe J, Hiemke C, Bartels M, Cohen LG, Gerloff C. Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reuptake inhibitor reboxetine. Neurosci Lett 2002; 330 (03) 231-4.
  • 23 Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA. et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000; 23 (05) 587-90.
  • 24 Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M. Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson’s disease and drug-induced parkinsonism. Brain 1994; 117 (Pt 2): 317-23.
  • 25 Puri BK, Davey NJ, Ellaway PH, Lewis SW. An investigation of motor function in schizophrenia using transcranial magnetic stimulation of the motor cortex. Br J Psychiatry 1996; 169 (06) 690-5.
  • 26 Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 1995; 59 (05) 493-8.
  • 27 Ridding MC, Inzelberg R, Rothwell JC. Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 1995; 37 (02) 181-8.
  • 28 Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994; 91 (02) 79-92.
  • 29 Rubinstein M, Cepeda C, Hurst RS, Flores-Hernandez J, Ariano MA, Falzone TL. et al. Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J Neurosci 2001; 21 (11) 3756-63.
  • 30 Seeger G, Schloss P, Schmidt MH. Functional polymorphism within the promotor of the serotonin transporter gene is associated with severe hyperkinetic disorders. Mol Psychiatry 2001; 06 (02) 235-8.
  • 31 Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 03 (06) 508-11.
  • 32 Sommer M, Wu T, Tergau F, Paulus W. Intraand interindividual variability of motor responses to repetitive transcranial magnetic stimulation. Clin Neurophysiol 2002; 113 (02) 265-9.
  • 33 Stahl SM. Essential psychopharmacology of depression and bipolar disorder. Cambridge University Press; 2000
  • 34 Wassermann EM, Greenberg BD, Nguyen MB, Murphy DL. Motor cortex excitability correlates with an anxiety-related personality trait. Biol Psychiatry 2001; 50 (05) 377-82.
  • 35 Wassermann EM. Variation in the response to transcranial magnetic brain stimulation in the general population. Clin Neurophysiol 2002; 113 (07) 1165-71.
  • 36 Werhahn KJ, Forderreuther S, Straube A. Effects of the serotonin1B/1D receptor agonist zolmitriptan on motor cortical excitability in humans. Neurology 1998; 51 (03) 896-8.
  • 37 Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ. Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology (Berl) 2000; 150 (01) 120-2.
  • 38 Ziemann U, Tergau F, Bruns D, Baudewig J, Paulus W. Changes in human motor cortex excitability induced by dopaminergic and antidopaminergic drugs. Electroencephalogr Clin Neurophysiol 1997; 105 (06) 430-7.
  • 39 Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. Motor excitability changes under antiepileptic drugs. Adv Neurol 1999; 81: 291-8.
  • 40 Ziemann U. Transkranielle Magnetstimulation: Neue Einsatzmöglichkeiten zur Messung kortikaler und kortikospinaler Erregbarkeit. Akt Neurol 2001; 28: 249-64.