Methods Inf Med 2010; 49(05): 419-420
DOI: 10.1055/s-0038-1625134
Editorial
Schattauer GmbH

Generalized Estimating Equations

Notes on the Choice of the Working Correlation Matrix
G. Molenberghs
1   Universiteit Hasselt, Diepenbeek, Belgium and Katholieke Universiteit Leuven, Leuven, Belgium
› Author Affiliations
Further Information

Publication History





Publication Date:
20 January 2018 (online)

 

 
  • References

  • 1 Ziegler A, Vens M. Generalized Estimating Equations: Notes on the Choice of the Working Correlation Matrix. Methods Inf Med 2010; 49 (05) 421-425.
  • 2 Breitung J, Chaganty NR, Daniel RM, Kenward MG, Lechner M, Martus P, Sabo RT, Wang Y-G, Zorn C. Discussion of “Generalized Estimating Equations: Notes on the Choice of the Working Correlation Matrix”. Methods Inf Med 2010; 49 (05) 426-432.
  • 3 Zeger SL, Liang K-Y, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988; 44: 1049-1060.
  • 4 Molenberghs G, Kenward MG. Semi-parametric marginal models for hierarchical data and their corresponding full models. Computational Statistics and Data Analysis 2009; 54: 585-597.
  • 5 Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. New York: Springer; 2005
  • 6 Molenberghs G, Kenward MG, Verbeke G, Teshome Ayele B. Pseudo-likelihood estimation for incomplete data. Statistica Sinica. (in press).
  • 7 Beunckens C, Sotto C, Molenberghs G. A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data. Computational Statistics and Data Analysis 2008; 52: 1533-1548.
  • 8 Molenberghs G, Kenward MG. Missing Data in Clinical Studies. Chichester: John Wiley & Sons; 2007
  • 9 Fitzmaurice GM, Molenberghs G, Lipsitz SR. Regression models for longitudinal binary responses with informative dropouts. Journal of the Royal Statistical Society, Series B 1995; 57: 691-704.