Nuklearmedizin 2001; 40(05): 164-171
DOI: 10.1055/s-0038-1623882
Originalarbeiten – Original Articles
Schattauer GmbH

An approach for comparative quantification of myocardial blood flow (0-15-H2O-PET), perfusion (Tc-99m-tetrofosmin-SPECT), and metabolism (F 18-FDG-PET)

Eine Methode zur vergleichenden Quantifizierung von myokardialem Blutfluss (015-H2O-PET), Perfusion (Tc-99m-Tetrofosmin-SPECT) und Stoffwechsel
W. M. Schäfer
1   Klinik für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Germany (Direktor: Univ.-Prof. Dr. med. U. Büll)
,
B. Nowak
1   Klinik für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Germany (Direktor: Univ.-Prof. Dr. med. U. Büll)
,
H.-J. Kaiser
1   Klinik für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Germany (Direktor: Univ.-Prof. Dr. med. U. Büll)
,
S. Block
1   Klinik für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Germany (Direktor: Univ.-Prof. Dr. med. U. Büll)
,
K.-C. Koch*
,
J. vom Dahl*
,
U. Büll
1   Klinik für Nuklearmedizin, Universitätsklinikum der RWTH Aachen, Germany (Direktor: Univ.-Prof. Dr. med. U. Büll)
› Author Affiliations
Further Information

Publication History

Eingegangen: 01 February 2001

31 March 2001

Publication Date:
10 January 2018 (online)

Summary

Aim: In the present study a new approach has been developed for comparative quantification of absolute myocardial blood flow (MBF), myocardial perfusion, and myocardial metabolism in short-axis slices. Methods: 42 patients with severe CAD, referred for myocardial viability diagnostics, were studied consecutively with 0-15-H2O PET (H2O-PET) (twice), Tc-99m-Tetrofosmin 5PECT (TT-SPECT) and F-18-FDG PET (FDG-PET). All dato sets were reconstructed using attenuation correction and reoriented into short axis slices. Each heart was divided into three representative slices (base, rnidventricular, apex) and 18 ROIs were defined on the FDG PET images and transferred to the corresponding H2O-PET and TT-SPECT slices. TT-SPECT and FDG-PET data were normalized to the ROI showing maximum perfusion. MBF was calculated for all left-ventricular ROIs using a single-compartment-model fitting the dynamic H2O-PET studies. Microsphere equivalent MBF (MBF_micr) was calculated by multiplying MBF and tissue-fraction, a parameter which was obtained by fitting the dynamic H2O-PET studies. To reduce influence of viability only well perfused areas (>70% TT-SPECT) were used for comparative quantification. Results: First and second mean global MBF values were 0.85 ml × min-1 × g-1 and 0.84 ml × min-1 × g1, respectively, with a repeatability coefficient of 0.30 ml ÷ min-1 × gl. After sectorization mean MBF_micr was between 0.58 ml × min1 ÷ ml"1 and 0.68 ml × min-1 × ml"1 in well perfused areas. Corresponding TT-SPECT values ranged from 83 % to 91 %, and FDG-PET values from 91 % to 103%. All procedures yielded higher values for the lateral than the septal regions. Conclusion: Comparative quantification of MBF, MBF_micr, TT-SPECT perfusion and FDG-PET metabolism can be done with the introduced method in short axis slices. The obtained values agree well with experimentally validated values of MBF and MBF_micr.

Zusammenfassung

Ziel: Entwicklung eines Verfahrens zur vergleichenden Quantifizierung des absoluten myokardialen Blutflusses (MBF) mit der myokardialen Perfusion und dem myokardialen Metabolismus in herzachsengerecht reorientierten Schnittebenen. Methoden: 42 Patienten mit schwerer KHK wurden konsekutiv mit 0-15-H2O-PET (H2O-PET) (zweifach), Tc-99m-Tetrofosmin-SPECT (TT-SPECT) und F-18-FDG-PET (FDG-PET) untersucht. Alle Datensätze wurden schwächungskorrigiert rekonstruiert und herzachsengerecht reorientiert. In drei Kurzachsenschnitten des FDG-PET-Datensatzes (apexnah, mittventrikulär, basisnah) wurden 18 ROIs zirkumferent definiert und auf die korrespondierenden H2O-PET- und TT-SPECT-Datensätze transferiert. Die TT-SPECT- und FDG-PET-Datensätze wurden auf das Perfusionsmaximum normiert, und der MBF an den H2O-PET-Datensätzen für das linksventrikuläre Myokard nach einem Ein-Kompartiment-Modell quantifiziert. Aus dem MBF und der ebenfalls bei der MBF-Quantifizie-rung gewonnenen Tissue-fraction konnte der mikro-sphärenäquivalente Blutfluss (MBF_micr) bestimmt werden. Für die vergleichende Quantifizierung wurden nur gut perfundierte Areale (>70% TT-SPECT) herangezogen, um die Methoden innerhalb einer »Vitalitätsklasse« vergleichen zu können. Ergebnisse: Der mittlere globale MBF beträgt 0,85 ml × min"1 × g"1 in der ersten und 0,84 ml ÷ min-1 × g-1 in der zweiten Messung bei einem Repeatability-Koeffizienten von 0,30 ml × min-1 × g1. Der MBF_micr in gut perfundierten Arealen ergibt bei einer Sektorisierung der Kurzachsenschnitte Werte von 0,58-0,68 ml × min-1 × ml1. Die entsprechenden TT-SPECT-Werte liegen im Bereich von 83-91%, die FDG-PET-Werte im Bereich von 91-103% mit der für alle drei Verfahren gleichen Tendenz zu höheren Werten in der Seitenwand als im Septum. Schlussfolgerung: Das vorgestellte Verfahren ermöglicht eine vergleichende Quantifizierung von MBF, MBF_micr, TT-SPECT-Perfusion und FDG-PET-Metabolismus in herzachsengerecht reorientierten Schnittebenen. Die ermittelten Werte liegen alle im Bereich tierexperimentell validierter Befunde.

* Medizinische Klinik I, Universitätsklinikum der RWTH Aachen, Germany (Direktor: Univ.-Prof. Dr. med. P. Hanrath)


 
  • Literatur

  • 1 Altehoefer C, Kasier HJ, Doerr R. et al. Fluo-rine-18 deoxyglucose for assessment of viable myocardium in perfusion defects in Tc-99m-MIBI SPET: a comparative study in patients with coronary artery disease. Eur J Nucl Med 1992; 19: 334-42.
  • 2 Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998; 25: 774-87.
  • 3 Bol A, Melin JA, Vanoverschelde JL. et al. Direct comparison of [i:,N]ammonia and [l50]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 1993; 87: 512-25.
  • 4 Camici PG, Rimoldi O. Blood flow in myocardial hibernation. Curr Opin Cardiol 1998; 13: 409-14.
  • 5 Coppens A, Sibomana M, Bol A, Michel C. Mediman: an object oriented programming approach for medical image analysis. IEEE Trans Nucl Sei 1993; 40: 950-5.
  • 6 Gerber BL, Vanoverschelde JL, Bol A. et al. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation 1996; 94: 651-9.
  • 7 Iida H, Kanno I, Takahashi A, Miura S. Measurement of absolute myocardial blood flow with H2-150 and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988; 78: 104-15.
  • 8 Iida H, Rhodes CG, de Silva R. et al. Myocardial tissue fraction - correction for partial volume effects and measure of tissue viability. J Nucl Med 1991; 32: 2169-75.
  • 9 Iida H, Rhodes CG, de Silva R. et al. Use of left ventricular time activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 1992; 33: 1669-77.
  • 10 Iida H, Tamura Y, Kitamura K, Bloomfield PM, Eberl S, Ono Y. Histochemical correlates of 150-water-perfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med 2000; 41: 1737-45.
  • 11 Kaufmann P, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurement with 150-labeled water and PET. J Nucl Med 1999; 40: 1848-56.
  • 12 Kaufmann P, Gnecchi-Ruscone T, Schäfers KP, Luescher T, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 2000; 36: 103-9.
  • 13 Kety SS. Theory of blood tissue exchange and its application to measurement of blood flow. MethMed Res 1960; 8: 223-7.
  • 14 Kety SS. Measurement of local blood flow by the exchange of an inert, diffusible substance. Meth Med Res 1960; 8: 228-36.
  • 15 Knuuti MJ, Yki-Jarvinen K, Voipio-Pulkki LM. et al. Enhancement of myocardial [fluorine-18] fluorodeoxyglucose uptake by a nicotinic acid derívate. J Nucl Med 1994; 35: 989-98.
  • 16 Kupferschlaeger J, Mueller B, Schulz G. et al. A method to correct myocardial SPECT with Tc-99m-compounds for scatter and attenuation without transmission. Nuklearmedizin 1997; 36: 56-64.
  • 17 Marinho NV, Keogh BE, Costa DC, Lammertsma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996; 93: 737-44.
  • 18 Moka DC, Schneider CA, Voth E, Baer FM, Schicha H. Assessement of regional myocardial blood flow in ischemic, hypokinetic myocardium using 150-H20 and transesophageal echocardiography. J Nucl Med 1999; 40: A175.
  • 19 Panza JA, Dilsizian V, Curiel RV, Ilnger EF, Laurienzo JM, Kitsiou AN. Myocardial blood flow at rest and contractile reserve in patients with chronic coronary artery disease and left ventricular dysfunction. J Nucl Cardiol 1999; 6: 487-94.
  • 20 Reinartz P, Zimny M, Cremerius U. et al. Quantifizierung von Repositionierungsfehlern bei PET-Studien durch Überlagerung von Emissions- und Transmissionsscan. Ein Vergleich zwischen Akquisitionen mit und ohne Repositionierung. Nuklearmedizin 1999; 38: 192-8.
  • 21 Schneider CA, Voth E, Moka D. et al. Improvement of myocardial blood flow to ischemic regions by agiontensin-converting enzyme inhibition with quinaprilat IV a study using 150 water dobutamine stress positron emission tomography. J Am Coll Cardiol 1999; 34: 1005-11.
  • 22 Schulz G, Ostwald E, Kaiser HJ, vom Dahl J, Kleinhans E, Buell U. Cardiac stress-ret single-photon emission computed tomography with technetium 99m-labeled tetrofosmin: influence of washout kinetics on regional myocardial uptake values of the rest study with a 1-day protocol. J Nucl Cardiol 1997; 4: 298-301.
  • 23 Uren NG, Crake T, Tousoulis D, Seydoux C, Davies GJ, Maseri A. Impairment of the myocardial vasomotor response to cold pressor stress in collateral dependent myocardium. Heart 1997; 78: 61-7.
  • 24 vom Dahl J, Altehoefer C, Sheehan FH. et al. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angioara-phy. J Am Coll Cardiol 1996; 28: 948-58.
  • 25 vom Dahl J, Altehoefer C, Sheehan FH. et al. Effect of myocardial viability assessed by tech-netium-99m-sestamibi SPECT and fluorine-18-FDG-PET on clinical outcome in coronary artery disease. J Nucl Med 1997; 38: 742-8.