Semin Neurol 2018; 38(01): 050-061
DOI: 10.1055/s-0038-1623534
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

New Directions in the Treatment of Glioblastoma

Zachary J. Reitman
1   Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
2   Harvard Radiation Oncology Program, Boston, Massachusetts
,
Frank Winkler
3   Neurology Clinic & German Consortium for Translational Cancer Research (DKTK), Heidelberg University Medical Center & DKFZ, Heidelberg, Germany
,
Andrew E. H. Elia
1   Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
2   Harvard Radiation Oncology Program, Boston, Massachusetts
4   Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
16 March 2018 (online)

Abstract

Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system. The current standard of care for GBM is maximal resection followed by postoperative radiation with concomitant and adjuvant temozolomide. Despite this multimodality treatment, the median survival for GBM remains marginally better than 1 year. In the past decade, genome-wide analyses have uncovered new molecular features of GBM that have refined its classification and provided new insights into the molecular basis for GBM pathogenesis. Here, we review these molecular features and discuss major clinical trials that have recently defined the field. We describe genetic alterations in isocitrate dehydrogenase, ATRX, the telomerase promoter, and histone H3 variants that promote GBM tumorigenesis and have altered GBM categorization. We also discuss intratumoral genetic heterogeneity as one explanation for therapeutic failures and explain how ultra-long extensions of glioma cells, called tumor microtubes, mediate therapeutic resistance. These findings provide new insights into GBM biology and offer hope for the development of next-generation therapies.

 
  • References

  • 1 Ostrom QT, Gittleman H, Xu J. , et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro Oncol 2016; 18 (05) (Suppl. 05) v1-v75
  • 2 Ron E, Modan B, Boice Jr JD. , et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 1988; 319 (16) 1033-1039
  • 3 Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA 2013; 310 (17) 1842-1850
  • 4 Melin BS, Barnholtz-Sloan JS, Wrensch MR. , et al; GliomaScan Consortium. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet 2017; 49 (05) 789-794
  • 5 Parsons DW, Jones S, Zhang X. , et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321 (5897): 1807-1812
  • 6 Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455 (7216): 1061-1068
  • 7 Verhaak RG, Hoadley KA, Purdom E. , et al; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17 (01) 98-110
  • 8 Brennan CW, Verhaak RG, McKenna A. , et al; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013; 155 (02) 462-477
  • 9 Brown TJ, Brennan MC, Li M. , et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2016; 2 (11) 1460-1469
  • 10 Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. ; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006; 7 (05) 392-401
  • 11 Walker MD, Alexander Jr E, Hunt WE. , et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 1978; 49 (03) 333-343
  • 12 Walker MD, Strike TA, Sheline GE. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 1979; 5 (10) 1725-1731
  • 13 Bleehen NM, Stenning SP. ; The Medical Research Council Brain Tumour Working Party. A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. Br J Cancer 1991; 64 (04) 769-774
  • 14 Nelson DF, Diener-West M, Horton J, Chang CH, Schoenfeld D, Nelson JS. Combined modality approach to treatment of malignant gliomas--re-evaluation of RTOG 7401/ECOG 1374 with long-term follow-up: a joint study of the Radiation Therapy Oncology Group and the Eastern Cooperative Oncology Group. NCI Monogr 1988; (06) 279-284
  • 15 Souhami L, Seiferheld W, Brachman D. , et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 2004; 60 (03) 853-860
  • 16 Corso CD, Bindra RS, Mehta MP. The role of radiation in treating glioblastoma: here to stay. J Neurooncol 2017; 134 (03) 479-485
  • 17 Stupp R, Hegi ME, Mason WP. , et al; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10 (05) 459-466
  • 18 Gilbert MR, Wang M, Aldape KD. , et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 2013; 31 (32) 4085-4091
  • 19 Gilbert MR, Dignam JJ, Armstrong TS. , et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370 (08) 699-708
  • 20 Chinot OL, Wick W, Mason W. , et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370 (08) 709-722
  • 21 Stupp R, Hegi ME, Gorlia T. , et al; European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15 (10) 1100-1108
  • 22 Valtonen S, Timonen U, Toivanen P. , et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997; 41 (01) 44-48 , discussion 48–49
  • 23 Westphal M, Hilt DC, Bortey E. , et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 2003; 5 (02) 79-88
  • 24 Stupp R, Taillibert S, Kanner A. , et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma. JAMA 2017; 318 (23) 2306-2316
  • 25 Mehta M, Wen P, Nishikawa R, Reardon D, Peters K. Critical review of the addition of tumor treating fields (TTFields) to the existing standard of care for newly diagnosed glioblastoma patients. Crit Rev Oncol Hematol 2017; 111: 60-65
  • 26 Vuorinen V, Hinkka S, Färkkilä M, Jääskeläinen J. Debulking or biopsy of malignant glioma in elderly people - a randomised study. Acta Neurochir (Wien) 2003; 145 (01) 5-10
  • 27 Keime-Guibert F, Chinot O, Taillandier L. , et al; Association of French-Speaking Neuro-Oncologists. Radiotherapy for glioblastoma in the elderly. N Engl J Med 2007; 356 (15) 1527-1535
  • 28 Roa W, Brasher PM, Bauman G. , et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 2004; 22 (09) 1583-1588
  • 29 Roa W, Kepka L, Kumar N. , et al. International Atomic Energy Agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 2015; 33 (35) 4145-4150
  • 30 Wick W, Platten M, Meisner C. , et al; NOA-08 Study Group of Neuro-oncology Working Group (NOA) of German Cancer Society. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 2012; 13 (07) 707-715
  • 31 Malmström A, Grønberg BH, Marosi C. , et al; Nordic Clinical Brain Tumour Study Group (NCBTSG). Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 2012; 13 (09) 916-926
  • 32 Perry JR, Laperriere N, O'Callaghan CJ. , et al; Trial Investigators. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med 2017; 376 (11) 1027-1037
  • 33 Seystahl K, Wick W, Weller M. Therapeutic options in recurrent glioblastoma--an update. Crit Rev Oncol Hematol 2016; 99: 389-408
  • 34 Fogh SE, Andrews DW, Glass J. , et al. Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 2010; 28 (18) 3048-3053
  • 35 Park JK, Hodges T, Arko L. , et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 2010; 28 (24) 3838-3843
  • 36 Weller M, Tabatabai G, Kästner B. , et al; DIRECTOR Study Group. MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 2015; 21 (09) 2057-2064
  • 37 Friedman HS, Prados MD, Wen PY. , et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27 (28) 4733-4740
  • 38 Kreisl TN, Kim L, Moore K. , et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27 (05) 740-745
  • 39 Taal W, Oosterkamp HM, Walenkamp AM. , et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol 2014; 15 (09) 943-953
  • 40 Wick W, Brandes AA, Gorlia T. , et al. LB-05 phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro Oncol 2015; 17 (05) v1
  • 41 Wick W, Puduvalli VK, Chamberlain MC. , et al. Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 2010; 28 (07) 1168-1174
  • 42 Batchelor TT, Mulholland P, Neyns B. , et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 2013; 31 (26) 3212-3218
  • 43 Killela PJ, Reitman ZJ, Jiao Y. , et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 2013; 110 (15) 6021-6026
  • 44 Schindler G, Capper D, Meyer J. , et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121 (03) 397-405
  • 45 Hatae R, Hata N, Suzuki SO. , et al. A comprehensive analysis identifies BRAF hotspot mutations associated with gliomas with peculiar epithelial morphology. Neuropathology 2017; 37 (03) 191-199
  • 46 Alexandrescu S, Korshunov A, Lai SH. , et al. Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytomas--same entity or first cousins?. Brain Pathol 2016; 26 (02) 215-223
  • 47 Hyman DM, Puzanov I, Subbiah V. , et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 2015; 373 (08) 726-736
  • 48 Bhat KPL, Balasubramaniyan V, Vaillant B. , et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 2013; 24 (03) 331-346
  • 49 Sandmann T, Bourgon R, Garcia J. , et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J Clin Oncol 2015; 33 (25) 2735-2744
  • 50 Patel AP, Tirosh I, Trombetta JJ. , et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344 (6190): 1396-1401
  • 51 Noushmehr H, Weisenberger DJ, Diefes K. , et al; Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010; 17 (05) 510-522
  • 52 Hegi ME, Diserens AC, Gorlia T. , et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352 (10) 997-1003
  • 53 Cahill DP, Levine KK, Betensky RA. , et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007; 13 (07) 2038-2045
  • 54 Johnson BE, Mazor T, Hong C. , et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014; 343 (6167): 189-193
  • 55 Yan H, Parsons DW, Jin G. , et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360 (08) 765-773
  • 56 Louis DN, Perry A, Reifenberger G. , et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131 (06) 803-820
  • 57 Lai A, Kharbanda S, Pope WB. , et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 2011; 29 (34) 4482-4490
  • 58 Dang L, White DW, Gross S. , et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462 (7274): 739-744
  • 59 Han CH, Batchelor TT. Isocitrate dehydrogenase mutation as a therapeutic target in gliomas. Linchuang Zhongliuxue Zazhi 2017; 6 (03) 33
  • 60 Losman JA, Kaelin Jr WG. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 2013; 27 (08) 836-852
  • 61 Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 2017; 14 (07) 434-452
  • 62 Bell RJ, Rube HT, Kreig A. , et al. Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 2015; 348 (6238): 1036-1039
  • 63 Hakin-Smith V, Jellinek DA, Levy D. , et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 2003; 361 (9360): 836-838
  • 64 Lazzerini-Denchi E, Sfeir A. Stop pulling my strings - what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol 2016; 17 (06) 364-378
  • 65 Brat DJ, Verhaak RG, Aldape KD. , et al; Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015; 372 (26) 2481-2498
  • 66 Jiao Y, Killela PJ, Reitman ZJ. , et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012; 3 (07) 709-722
  • 67 Schwartzentruber J, Korshunov A, Liu XY. , et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482 (7384): 226-231
  • 68 Flynn RL, Cox KE, Jeitany M. , et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 2015; 347 (6219): 273-277
  • 69 Wu G, Broniscer A, McEachron TA. , et al; St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012; 44 (03) 251-253
  • 70 Solomon DA, Wood MD, Tihan T. , et al. Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 2016; 26 (05) 569-580
  • 71 Sturm D, Witt H, Hovestadt V. , et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012; 22 (04) 425-437
  • 72 Bender S, Tang Y, Lindroth AM. , et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013; 24 (05) 660-672
  • 73 Lewis PW, Müller MM, Koletsky MS. , et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 2013; 340 (6134): 857-861
  • 74 Grasso CS, Tang Y, Truffaux N. , et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 2015; 21 (06) 555-559
  • 75 Hashizume R, Andor N, Ihara Y. , et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 2014; 20 (12) 1394-1396
  • 76 Zadeh G, Aldape K. ACVR1 mutations and the genomic landscape of pediatric diffuse glioma. Nat Genet 2014; 46 (05) 421-422
  • 77 Zhang L, Chen LH, Wan H. , et al. Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet 2014; 46 (07) 726-730
  • 78 Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol 2015; 5: 55
  • 79 Snuderl M, Fazlollahi L, Le LP. , et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 2011; 20 (06) 810-817
  • 80 Szerlip NJ, Pedraza A, Chakravarty D. , et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 2012; 109 (08) 3041-3046
  • 81 Brown PD, Krishnan S, Sarkaria JN. , et al; North Central Cancer Treatment Group Study N0177. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 2008; 26 (34) 5603-5609
  • 82 Chakravarti A, Wang M, Robins HI. , et al. RTOG 0211: a phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients. Int J Radiat Oncol Biol Phys 2013; 85 (05) 1206-1211
  • 83 Weller M. , et al. ACT IV: an international, double-blind, phase 3 trial of rindopepimut in newly diagnosed, EGFRvIII-expressing glioblastoma. Neuro Oncol 2016; 18 (06) vi17-vi18
  • 84 Nikbakht H, Panditharatna E, Mikael LG. , et al. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 2016; 7: 11185
  • 85 Brastianos PK, Nayyar N, Rosebrock D. , et al. Resolving the phylogenetic origin of glioblastoma via multifocal genomic analysis of pre-treatment and treatment-resistant autopsy specimens. NPJ Oncology 2017; 1: 33
  • 86 Osswald M, Jung E, Sahm F. , et al. Brain tumour cells interconnect to a functional and resistant network. Nature 2015; 528 (7580): 93-98
  • 87 Osswald M, Solecki G, Wick W, Winkler F. A malignant cellular network in gliomas: potential clinical implications. Neuro Oncol 2016; 18 (04) 479-485
  • 88 Weil S, Osswald M, Solecki G. , et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol 2017; 19 (10) 1316-1326
  • 89 Jung E, Osswald M, Blaes J. , et al. Tweety-homolog 1 drives brain colonization of gliomas. J Neurosci 2017; 37 (29) 6837-6850
  • 90 Cairncross JG, Wang M, Jenkins RB. , et al. Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J Clin Oncol 2014; 32 (08) 783-790
  • 91 Lee EQ, Kaley TJ, Duda DG. , et al. A multicenter, phase II, randomized, noncomparative clinical trial of radiation and temozolomide with or without vandetanib in newly diagnosed glioblastoma patients. Clin Cancer Res 2015; 21 (16) 3610-3618
  • 92 Reitman ZJ, Duncan CG, Poteet E. , et al. Cancer-associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and d-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia. J Biol Chem 2014; 289 (34) 23318-23328
  • 93 Reitman ZJ, Jin G, Karoly ED. , et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A 2011; 108 (08) 3270-3275
  • 94 Tateishi K, Wakimoto H, Iafrate AJ. , et al. Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 2015; 28 (06) 773-784
  • 95 Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol 2014; 9: 1-25
  • 96 Reardon DA, Wen PY, Wucherpfennig KW, Sampson JH. Immunomodulation for glioblastoma. Curr Opin Neurol 2017; 30 (03) 361-369
  • 97 Alexandrov LB, Nik-Zainal S, Wedge DC. , et al; Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain. Signatures of mutational processes in human cancer. Nature 2013; 500 (7463): 415-421
  • 98 Miller TE, Liau BB, Wallace LC. , et al. Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature 2017; 547 (7663): 355-359
  • 99 Alexander BM, Cloughesy TF. Adult glioblastoma. J Clin Oncol 2017; 35 (21) 2402-2409
  • 100 Wick A, Kessler T, Elia AEH. , et al. Glioblastoma in the elderly: solid conclusions built on shifting sand?. Neuro Oncol 2017
  • 101 Bjerke L, Mackay A, Nandhabalan M. , et al. Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 2013; 3 (05) 512-519