Osteologie 2015; 24(01): 30-41
DOI: 10.1055/s-0037-1622036
Technische Hilfsmittel und muskuloskelettale Gesundheit
Schattauer GmbH

Steigerung der Knochenfestigkeit durch Ganzkörpervibrationstraining

Eine Übersicht über die aktuelle StudienlageIncrease of bone strength by Whole Body Vibration TrainingAn overview
S. von Stengel
1   Institut für Medizinische Physik; Friedrich Alexander-Universität Erlangen-Nürnberg
,
W. Kemmler
1   Institut für Medizinische Physik; Friedrich Alexander-Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

eingereicht: 01 October 2014

angenommen: 27 October 2014

Publication Date:
02 January 2018 (online)

Zusammenfassung

Ganzkörpervibrationstraining (Whole Body Vibration [WBV] Training) stellt eine “alternative Trainingstechnologie” dar, die in der letzten Dekade zunehmend Verbreitung gefunden hat und sich auch im Bereich Osteoporose etablieren konnte. WBV-Training besitzt das Potenzial, das Frakturrisiko als zentrale Zielgröße aller Interventionsmaßnahmen im Bereich Osteoporose über die zwei Trainingsziele “Erhöhung der Knochenfestigkeit” und “Reduktion des Sturzrisikos” anzusteuern. Die osteogene Wirkung von WBV wurde in tierexperimentellen Studien klar belegt. Im Gegensatz dazu weisen die humanen klinischen WBV-Studien eher heterogene Ergebnisse auf, wobei 11 von 19 Studien signifikant positive Ergebnisse berichten. Die uneinheitlichen Ergebnisse in humanen Studien könnten nicht zuletzt darauf zurückzuführen sein, dass in den Studien unterschiedliche Geräte und Belastungsprotokolle zur Anwendung kamen. In diesem Beitrag werden die grundlegenden Wirkungsweisen von WBV auf den Knochen dargestellt und inhaltliche Unterschiede von WBV-Training vor dem Hintergrund der heterogenen Studienergebnisse diskutiert, wobei das Ziel die Identifikation von Erfolgsprädikatoren für ein osteogenes WBV Training ist.

Summary

Whole Body Vibration (WBV) Training represents an “alternative training technology” which got increasingly popular in the last decade and was established in the field of osteoporosis both for prevention and therapy. WBV-Training has the potential to reduce the risk of fractures by two pathways, the “increase of bone strength” and the “reduction of the risk of falling”. The osteogenic effect of WBV was clearly demonstrated in animal studies. In contrast, the human clinical studies of WBV-Training produced rather heterogeneous results with 11 of 19 studies reporting significant positive results. The inconsistent results in human studies may be due to the use of different WBV devices and vibration training protocols. The article describes the basic effects of WBV on bone and discusses the differences of WBV-Training considering the heterogeneous study results. The aim is the identification of key factors for an osteogenic WBV-Training.

 
  • Literatur

  • 1 Wolff J. Über die innere Architektür der Knochen und ihre Bedeutung für die Frage vom Knochenwachstum. Virchow Arch Path Anat Physio 1870; 50: 389-453.
  • 2 Frost HM. Bone mass and the mechanostat. A proposal. Anat Rec 1987; 219: 1-19.
  • 3 Senn E. Grundlagen der positiv-trophischen Wirksamkeit physikalischer Belastung auf normales, osteopenisches und osteoporotisches Knochengewebe. Phys Med 1994; 04: 133-134.
  • 4 Rubin C, Pope M, Fritton JC, Magnusson M. et al. Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine 2003; 28: 2621-2627.
  • 5 Abercromby AF, Amonette WE, Layne CS. et al. Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc 2007; 39: 1642-1650.
  • 6 Bosco C, Iacovelli M, Tsarpela O. et al. Hormonal responses to whole-body vibration in men. Eur J Appl Physiol 2000; 81: 449-454.
  • 7 Cardinale M, Soiza RL, Leiper JB. et al. Hormonal responses to a single session of wholebody vibration exercise in older individuals. Br J Sports Med 2010; 44: 284-288.
  • 8 Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37: 411-417.
  • 9 Hsieh YF, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 2001; 16: 918-924.
  • 10 Hsieh YF, Robling AG, Ambrosius WT. et al. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 2001; 16: 2291-2297.
  • 11 McDonald F, Yettram AL, MacLeod K. The response of bone to external loading regimens. Med Eng Phys 1994; 16: 384-397.
  • 12 Turner CH, Forwood MR, Rho JY, Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 1994; 09: 87-97.
  • 13 Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 1998; 23: 313-318.
  • 14 O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech 1982; 15: 767-781.
  • 15 Skerry TM, Peet Nm. “Unloading” exercises increases bone formation in rats. J Bone Min Res 1997; 12: 1520.
  • 16 Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol Endocrinol Metab 1995; 269: E438-E442.
  • 17 Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol 2001; 91: 1971-1976.
  • 18 McLeod KJ, Rubin CT. Sensitivity of the bone remodeling response to the frequency of applied strain. Trans Orthop Res Soc 1992; 17: 533.
  • 19 Umemura Y, Ishiko T, Yamauchi T. et al. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 1997; 12: 1480-1485.
  • 20 Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res 1994; 165-174.
  • 21 Letechipia JE, Alessi A, Rodriguez G, Asbun J. Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?. Med Hypotheses 2010; 75: 196-198.
  • 22 Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater 2012; 24: 278-291.
  • 23 Weinbaum S, Cowin SC, Zeng Y. A model for the exitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 1994; 27: 339-360.
  • 24 Lanyon LE, Skerry T. Postmenopausal osteoporosis is a failure of bone’s adaption to functional loading: a hypothesis. J Bone Miner Res 2001; 16: 1937-1947.
  • 25 Qin YX, Rubin CT, McLeod KJ. Nonlinear dependance of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res 1998; 16: 482-489.
  • 26 Rubin C, Turner AS, Bain S. et al. Low mechanical signals strengthen long bones. Nature 2001; 412: 603-604.
  • 27 Rubin CT, Lanyon LE. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 1984; 107: 321-327.
  • 28 Sehmisch S, Galal R, Kolios L. et al. Effects of lowmagnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int 2009; 20: 1999-2008.
  • 29 Rubinacci A, Marenzana M, Cavani F. et al. Ovariectomy sensitizes rat cortical bone to wholebody vibration. Calcif Tissue Int 2008; 82: 316-326.
  • 30 Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 2001; 15: 2225-2229.
  • 31 Yang P, Jia B, Ding C. et al. Whole-body vibration effects on bone before and after hind-limb unloading in rats. Aviat Space Environ Med 2009; 80: 88-93.
  • 32 Xie L, Rubin C, Judex S. Enhancement of the adolescent murine musculoskeletal system using lowlevel mechanical vibrations. J Appl Physiol 2008; 104: 1056-1062.
  • 33 Xie L, Jacobson JM, Choi ES. et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 2006; 39: 1059-1066.
  • 34 Chen GX, Zheng S, Qin S. et al. Effect of low-magnitude whole-body vibration combined with alendronate in ovariectomized rats: a random controlled osteoporosis prevention study. PLoS One 2014; 09: e96181.
  • 35 Komrakova M, Sehmisch S, Tezval M. et al. Identification of a vibration regime favorable for bone healing and muscle in estrogen-deficient rats. Calcif Tissue Int 2013; 92: 509-520.
  • 36 Stuermer EK, Komrakova M, Werner C. et al. Musculoskeletal response to whole-body vibration during fracture healing in intact and ovariectomized rats. Calcif Tissue Int 2010; 87: 168-180.
  • 37 Brouwers JE, van Rietbergen B, Ito K, Huiskes R. Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J Orthop Res 2010; 28: 62-69.
  • 38 Lynch MA, Brodt MD, Stephens AL. et al. Lowmagnitude whole-body vibration does not enhance the anabolic skeletal effects of intermittent PTH in adult mice. J Orthop Res 2011; 29: 465-472.
  • 39 Lynch MA, Brodt MD, Silva MJ. Skeletal effects of whole-body vibration in adult and aged mice. J Orthop Res 2010; 28: 241-247.
  • 40 Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 2007; 40: 1333-1339.
  • 41 Oxlund BS, Ortoft G, Andreassen TT, Oxlund H. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone 2003; 32: 69-77.
  • 42 Wenger KH, Freeman JD, Fulzele S. et al. Effect of whole-body vibration on bone properties in aging mice. Bone 2010; 47: 746-755.
  • 43 Christiansen BA, Silva MJ. The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. Ann Biomed Eng 2006; 34: 1149-1156.
  • 44 Sehmisch S, Galal R, Kolios L. et al. Effects of lowmagnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporos Int 2009; 20 (12) 1999-2008.
  • 45 Warden SJ, Turner CH. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone 2004; 34: 261-270.
  • 46 Von Stengel S, Kemmler W, Bebenek M. et al. Effects of whole-body vibration training on different devices on bone mineral density. Med Sci Sports Exerc 2011; 43: 1071-1079.
  • 47 Von Stengel S, Kemmler W, Engelke K. Ganzkörpervibration – ein neuer Ansatz in der Osteoporoseprävention?. Osteologie 2008; 17: 24-30.
  • 48 Abercromby AF, Amonette WE, Layne CS. et al. Vibration exposure and biodynamic responses during whole-body vibration training. Med Sci Sports Exerc 2007; 39: 1794-1800.
  • 49 Muir J, Kiel DP, Rubin CT. Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults. J Sci Med Sport 2013; 16: 526-531.
  • 50 Perchthaler D, Horstmann T, Grau S. Variations in neuromuscular activity of thigh muscles during whole-body vibration in consideration of different biomechanical variables. J Sports Sci Med 2013; 12: 439-446.
  • 51 Ritzmann R, Gollhofer A, Kramer A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol 2013; 113: 1-11.
  • 52 Verschueren SM, Roelants M, Delecluse C. et al. Effects of 6-month whole body vibration training on hip density; muscle strength, and postural control in postmenopausal women: A randomized controlled pilot study. J Bone Min Res 2004; 19: 352-359.
  • 53 Ruan XY, Jin FY, Liu YL. et al. Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis. Chin Med J (Engl) 2008; 121: 1155-1158.
  • 54 Rubin C, Recker R, Cullen D. et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004; 19: 343-351.
  • 55 Zha DS, Zhu QA, Pei WW. et al. Does whole-body vibration with alternative tilting increase bone mineral density and change bone metabolism in senior people?. Aging Clin Exp Res 2012; 24: 28-36.
  • 56 Lai CL, Tseng SY, Chen CN. et al. Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial. Clin Interv Aging 2013; 08: 1603-1609.
  • 57 Slatkovska L, Alibhai SM, Beyene J. et al. Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women: a randomized trial. Ann Intern Med 2011; 155: 668-679 W205.
  • 58 Iwamoto J, Takeda T, Sato Y, Uzawa M. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 2005; 17: 157-163.
  • 59 Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord 2006; 07: 92.
  • 60 Russo CR, Lauretani F, Bandinelli S. et al. High-frequency vibration training increases muscle power in postmenopausal women. Arch Phys Med Rehabil 2003; 84: 1854-1857.
  • 61 Stolzenberg N, Belavy DL, Beller G. et al. Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise. J Musculoskelet Neuronal Interact 2013; 13: 66-76.
  • 62 von Stengel S, Kemmler W, Engelke K, Kalender WA. Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women. Osteoporos Int 2010; 22: 317-325.
  • 63 Verschueren SM, Bogaerts A, Delecluse C. et al. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res 2011; 26: 42-49.
  • 64 Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2012; 24: 526-534.
  • 65 Ligouri GC, Shoepe TC, Almstedt HC. Whole Body Vibration Training is Osteogenic at the Spine in College-Age Men and Women. J Hum Kinet 2012; 31: 55-68.
  • 66 Gilsanz V, Wren TA, Sanchez M. et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006; 21: 1464-1474.
  • 67 Prioreschi A, Oosthuyse T, Avidon I, McVeigh J. Whole body vibration increases hip bone mineral density in road cyclists. Int J Sports Med 2012; 33: 593-599.
  • 68 Ward K, Alsop C, Caulton J. et al. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 2004; 19: 360-369.
  • 69 Torvinen S, Kannus P, Sievanen H. et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 2003; 18: 876-884.
  • 70 Lam TP, Ng BK, Cheung LW. et al. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporos Int 2013; 24: 1623-1636.
  • 71 Humphries B, Fenning A, Dugan E. et al. Wholebody vibration effects on bone mineral density in women with or without resistance training. Aviat Space Environ Med 2009; 80: 1025-1031.
  • 72 Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a metaanalysis of randomized controlled trials. Age 2011; 34: 1493-1515.
  • 73 Merriman H, Jackson K. The effects of wholebody vibration training in aging adults: a systematic review. J Geriatr Phys Ther 2009; 32: 134-145.
  • 74 Pollock RD, Woledge RC, Mills KR. et al. Muscle activity and acceleration during whole body vibration: effect of frequency and amplitude. Clin Biomech (Bristol, Avon) 2010; 25: 840-846.
  • 75 Hazell TJ, Jakobi JM, Kenno KA. The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Appl Physiol Nutr Metab 2007; 32: 1156-1163.
  • 76 Cardinale M, Lim J. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J Strength Cond Res 2003; 17: 621-624.
  • 77 Martinez-Pardo E, Romero-Arenas S, Alcaraz PE. Effects of different amplitudes (high vs. low) of whole-body vibration training in active adults. J Strength Cond Res 2013; 27: 1798-1806.
  • 78 Klarner A, von Stengel S, Kemmler W. [Effects of two different types of whole body vibration on neuromuscular performance and body composition in postmenopausal women]. Dtsch Med Wochenschr 2011; 136: 2133-2139.
  • 79 Sievanen H, Karinkanta S, Moisio-Vilenius P, Ripsaluoma J. Feasibility of whole-body vibration training in nursing home residents with low physical function: a pilot study. Aging Clin Exp Res 2014; 26 (05) 511-517.
  • 80 Buckinx F, Beaudart C, Maquet D. et al. Evaluation of the impact of 6-month training by whole body vibration on the risk of falls among nursing home residents, observed over a 12-month period: a single blind, randomized controlled trial. Aging Clin Exp Res 2014; 26: 369-376.
  • 81 del Pozo-Cruz B, Hernandez MAMocholi, Adsuar JC. et al. Effects of whole body vibration therapy on main outcome measures for chronic non-specific low back pain: a single-blind randomized controlled trial. J Rehabil Med 2011; 43: 689-694.
  • 82 Rittweger J, Just K, Kautzsch K. et al. Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: a randomized controlled trial. Spine (Phila Pa 1976) 2002; 27: 1829-1834.
  • 83 Brehm W, Pahmeier I, Ungerer-Röhrich U. et al. Psychosoziale Ressourcen – Stärkung von psychosozialen Ressourcen im Gesundheitssport. Frankfurt am Main: Deutscher Turner-Bund, DTB; 2002
  • 84 Cussler EC, Going SB, Houtkooper LB. et al. Exercise frequency and calcium intake predict 4-year bone changes in postmenopausal women. Osteoporos Int 2005; 16: 2129-2141.
  • 85 Kemmler W, von Stengel S. Exercise frequency, health risk factors and diseases of the elderly. Arch Phys Med Rehabil 2013; 94 (11) 2046-2053.
  • 86 Kiiski J, Heinonen A, Jarvinen TL. et al. Transmission of vertical whole body vibration to the human body. J Bone Miner Res 2008; 23: 1318-1325.
  • 87 Pel JJ, Bagheri J, van Dam LM. et al. Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs. Med Eng Phys 2009; 31: 937-944.
  • 88 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984; 66: 397-402.
  • 89 Rubin CT, Turner AS, Müller R. et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 2002; 17: 349-357.