Hamostaseologie 2010; 30(03): 136-138
DOI: 10.1055/s-0037-1619047
Review
Schattauer GmbH

The role of glycoprotein Ibalpha and von Willebrand factor interaction in stroke development

Die Rolle der Interaktion zwischen Glykoprotein Ibα und von-Willebrand-Faktor bei der Entwicklung des Schlaganfalls
G. Stoll
1   Department of Neurology, University of Würzburg, Germany
,
C. Kleinschnitz
1   Department of Neurology, University of Würzburg, Germany
,
B. Nieswandt
2   Chair of Experimental Biomedicine, University of Würzburg, Germany
3   Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Germany
› Author Affiliations
Research in the authors’ laboratories has been supported by the Deutsche Forschungsgemeinschaft, SFB 688 (A1, A13, B1) and the Interdisciplinary Clinical Research Center Würzburg (F-25). We thank Prof. U. Walter (Würzburg) for continuous support.
Further Information

Publication History

Publication Date:
26 December 2017 (online)

Summary

Ischaemic stroke is a devastating disease with limited treatment options due to numerous uncertainties regarding the underlying pathophysiology. The contribution of glycoprotein (GP)Ibα and von Willebrand factor (VWF) in stroke development has only recently been established in mice. Complete blockade of GPIbα led to a significant reduction of infarct volumes in mice undergoing one hour of transient middle cerebral artery occlusion (tMCAO). High shear-induced changes in VWF confirmation are a prerequisite for VWF binding to collagen and GPIbα expressed on platelets. Importantly, transgenic VWF−/−mice were similarly protected against ischemic stroke after tMCAO, and hydrodynamic injection of a VWF-encoding plasmid restored VWF serum levels and the susceptibility towards stroke. Secreted VWF is rapidly cleaved by ADAMTS13. Accordingly, ADAMTS13 deficient mice developed larger infarction after tMCAO, while infusion of recombinant ADAMTS13 into wild-type mice was strokeprotective. In conclusion, there is compelling evidence that GPIbα/VWF interactions and downstream signaling via phospholipase D1 (PLD1) provide new therapeutic targets in ischemic stroke.

Zusammenfassung

Der ischämische Schlaganfall ist eine häufige Erkrankung mit begrenzten Therapieoptionen, dessen Pathophysiologie noch weitgehend unverstanden ist. Neueste Untersuchungen belegen die besondere Bedeutung von Glykoprotein(GP) Ibα und von-Willebrand-Faktor (VWF) in der Entstehung von ischämischen Hirnläsionen. Die Blockade von GPIbα führte bei Mäusen zu einer Reduktion des Infarktvolumens nach transientem Verschluss der Arteria cerebri media (tMCAOModell). VWF unterliegt unter hohen arteriellen Flussgeschwindigkeiten einer Konformationsänderung, die Voraussetzung für die Bindung an Kollagen und an GPIbα auf Thrombozyten ist. VWF-defiziente Mäuse waren ebenfalls vor Schlaganfällen geschützt, nach Gentransfer von VWF mit partieller Rekonstitution des Plasmaspiegels ging dieser Schutz wieder verloren. Freigesetzter VWF wird im Blut durch das Enzym ADAMTS 13 gespalten, um eine unkontrollierte Thrombenbildung zu verhindern. Entsprechend entwickelten sich bei ADAMTS13-defizienten Mäusen größere Infarkte. GPIbα/VWF-Interaktionen und nachgeschaltete Signalkaskaden über Phospholipase D1 (PLD1) stellen viel versprechende Targets zur Prävention und Behandlung des ischämischen Schlaganfalls dar.

 
  • References

  • 1 Adams HP, del Zoppo G, Alberts MJ. et al. Guidelines for the early management of adults with ischemic stroke. Stroke 2007; 38: 1655-1711.
  • 2 Bath PM, Blann A, Smith N, Butterworth RJ. Von Willebrand factor, P-selectin and fibrinogen levels in patients with acute ischaemic and haemorrhagic stroke, and their relationship with stroke subtype and functional outcome. Platelets 1998; 09: 155-159.
  • 3 Bergmeier W, Piffath CL, Goerge T. et al. The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci USA 2006; 103: 16900-16905.
  • 4 Berndt MC, Shen Y, Dopheide SM. et al. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 2001; 86: 178-188.
  • 5 Bongers TN, de Bruijne EL, Dippel DW. et al. Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis 2009; 207: 250-254.
  • 6 Bongers TN, de Maat MP, van Goor ML. et al. High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke 2006; 37: 2672-2677.
  • 7 Chauhan AK, Kisucka J, Brill A. et al. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 2008; 205: 2065-2074.
  • 8 Cooney MT, Dudina AL, O’Callaghan P, Graham IM. Von Willebrand Factor in CHD and Stroke: Relationships and Therapeutic Implications. Curr Treat Options Cardiovasc Med 2007; 09: 180-190.
  • 9 De Meyer SF, Deckmyn H, Vanhoorelbeke K. Von Willebrand factor to the rescue. Blood 2009; 113: 5049-5057.
  • 10 De Meyer SF, Vandeputte N, Pareyn I. et al. Restoration of plasma von Willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy by severe von Willebrand disease. Arterioscler Thromb Vasc Biol 2008; 28: 1621-1626.
  • 11 Denis C, Methia N, Frenette PS. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 1998; 95: 9524-9529.
  • 12 Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke:an integrated view. Trends Neurosci 1999; 22: 391-397.
  • 13 Elvers M, Stegner D, Hagedorn I. et al. Impaired αIIbβ3 integrin activation and shear-dependent thrombus formation in mice lacking phospolipase D1. Sci Signal 2010; 03 (103) ra1.
  • 14 Feigin VL, Lawes CM, Bennet DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003; 02: 43-53.
  • 15 Frank MB, Reiner AP, Schwartz SM. et al. The Kozak sequence polymorphism of platelet glycoprotein Ibalpha and risk of nonfatal myocardial infarction and nonfatal stroke in young women. Blood 2001; 97: 875-879.
  • 16 Fujioka M, Hayakawa K, Mishima K. et al. ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating post-ischemic hypoperfusion. Blood 2010; 115: 1650-1653.
  • 17 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments by in vivo proteolysis. Blood 1996; 87: 4235-4244.
  • 18 Hughes M, Lip GYH. on behalf of the guideline development group for the NICE national clinical guideline for management of atrial fibrillation in primary and secondary care. Stroke and thrombembolism in atrial fibrillation: a systemic review of stroke risk factors, risk stratification schema and cost effectiveness data. Thromb Haemost 2008; 99: 295-304.
  • 19 Kleinschnitz C, De Meyer SF, Schwarz T. et al. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 2009; 113: 3600-3603.
  • 20 Kleinschnitz C, Pozgajova M, Pham M. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 2007; 115: 2323-2330.
  • 21 Lopez AD, Mathers CD, Ezzati M. et al. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006; 367: 1747-1757.
  • 22 Maguire JM, Thakkinstian A, Sturm J. et al. Polymorphisms in platelet glycoprotein 1balpha and factor VII and risk of ischemic stroke: a meta-analysis. Stroke 2008; 39: 1710-1716.
  • 23 Marx I, Christophe OD, Lenting PJ. et al. Altered thrombus formation in von Willebrand factor-deficient mice expressing von Willebrand factor variants with defective binding to collagen or GPIIbIIIa. Blood 2008; 112: 603-609.
  • 24 Massberg S, Gawaz M, Grüner S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 2003; 197: 41-49.
  • 25 Nieswandt B, Stoll G. The smaller, the better: VWF in stroke. Blood 2010; 115: 1477-1478.
  • 26 Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood 2008; 112: 11-18.
  • 27 Sato M, Suzuki A, Nagata K, Uchiyama S. Increased von Willebrand factor in acute stroke patients with atrial fibrillation. J Stroke Cerebrovasc Dis 2006; 15: 1-7.
  • 28 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-297.
  • 29 Sonoda A, Murata M, Ito D. et al. Association between platelet glycoprotein Ibalpha genotype and ischemic cerebrovascular disease. Stroke 2000; 31: 493-497.
  • 30 Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 1998; 56: 149-171.
  • 31 Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 2006; 37: 1923-1932.
  • 32 Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood 2008; 112: 3555-3562.
  • 33 Tsai HM. Physiological cleavage of von Willebrand factor by a plasma protease is dependent on its confirmation and requires calcium ion. Blood 1996; 87: 4235-4244.
  • 34 Tzoulaki I, Murray GD, Lee AJ. et al. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. Circulation 2007; 115: 2119-2127.
  • 35 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscl Thromb Vasc Biol 2008; 28: 403-412.
  • 36 Verro P, Gorelick PB, Nguyen D. Aspirin plus dipyridamole versus aspirin for prevention of vascular events after stroke or TIA: a meta-analysis. Stroke 2008; 39: 1358-1363.
  • 37 Zhao BQ, Chauhan AK, Canault M. et al. Von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 2009; 114: 3329-3334.