Adipositas - Ursachen, Folgeerkrankungen, Therapie 2011; 05(03): 134-140
DOI: 10.1055/s-0037-1618746
Gestationsdiabetes
Schattauer GmbH

Fetale Programmierung bei diabetischer Schwangerschaft

Fetal programming during diabetic pregnancy
J. H. Stupin
1   Klinik für Geburtsmedizin, AG Experimentelle Geburtsmedizin, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum
,
T. Harder
1   Klinik für Geburtsmedizin, AG Experimentelle Geburtsmedizin, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum
,
A. Plagemann
1   Klinik für Geburtsmedizin, AG Experimentelle Geburtsmedizin, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
28. Dezember 2017 (online)

Zusammenfassung

Studien an Nachkommen diabetischer Mütter haben entscheidend zu der Erkenntnis beigetragen, dass Alterationen der perinatalen Umweltbedingungen für Krankheiten im späteren Leben prädisponieren. Hormone fungieren dabei als umweltabhängige Organisatoren des sich entwickelnden “Neuro-Endokrino-Immun-Netzwerks”, welches alle fundamentalen Lebensprozesse reguliert. Wenn sie aufgrund alterierter intrauteriner und/oder neonataler Umgebung in unphysiologischen Konzentrationen während “kritischer Entwicklungsphasen” vorkommen, können sie als “endogene funktionelle Teratogene” wirken. Fetaler und neonataler Hyperinsulinismus ist pathognomonisch für Nachkommen diabetischer Mütter. Daten unserer Arbeitsgruppe zeigen, dass ein perinataler Hyperinsulinismus die Entwicklung von Adipositas und Diabetes “programmieren” kann und dass mütterliches Übergewicht und damit einhergehende fetale/neonatale Überernährung ähnliches bewirken können. Ein generelles Glukoseintoleranzscreening und eine entsprechende Therapie sind daher ebenso empfehlenswert wie die Vermeidung einer frühpostnatalen Überernährung, als Maßnahmen einer genuinen Primärprävention.

Summary

It is meanwhile accepted that alterations of the perinatal environment predispose for diseases throughout life. Studies in offspring of diabetic mothers (ODM) have decisively contributed to this perception and our understanding of causal mechanisms. Hormones are environment-dependent organizers of the developing neuro-endocrine-immune network, which regulates all fundamental processes of life. When present in non-physiological concentrations during critical periods of development, induced by altered intrauterine and/or neonatal environment, hormones can therefore also act as endogenous functional teratogens. Fetal and neonatal hyperinsulinism is the pathognomic feature in ODM. Data obtained by our group indicate that increased insulin during perinatal life may program the development of obesity and diabetes. Similar may occur due to maternal overweight accompanied by increased fetal food supply, and neonatal overfeeding. From a clinical point of view, general screening and therapy of diabetes during pregnancy as well as avoidance of early postnatal overfeeding are therefore recommended, as causal approaches to a genuine primary prevention.

 
  • Literatur

  • 1 Aerts L, Holemans K, Van Assche FA. Maternal diabetes during pregnancy: Consequences for the offspring. Diabetes Metab Rev 1990; 06: 147-167.
  • 2 Bottazzo GF, Bosi E, Todd J. et al. Inappropriate HLA class II expression on epithelial cells: Basis for new interpretation of HLA association in autoimmune endocrine disorders. In: Farid NR. Immunogenetics of Endocine Disorders. Alan R. Liss. Inc; 1988: 133-143.
  • 3 Crowther NJ, Trusler J, Cameron N. et al. Relation between weight gain and beta-cell secretory activity and non-esterified fatty acid production in 7-year-old african children: results from the birth to ten study. Diabetologia 2000; 43: 978-985.
  • 4 Dabelea D, Hanson RL, Lindsay RS. et al. Intrauterine exposure to diabetes conveys risks for Type II diabetes and obesity: A study of discordant sibships. Diabetes 2000; 49: 2208-2211.
  • 5 Dörner G. Perinatal hormone levels and brain organization. Anatomical Neuroendocrinology 1975; 245-252.
  • 6 Dörner G. Hormones and brain differentiation. Amsterdam-Oxford-New York: Elsevier: 1976
  • 7 Dörner G, Mohnike A. Further evidence for a predominantly maternal transmission of maturityonset type diabetes. Endokrinologie 1976; 68: 121-124.
  • 8 Dörner G, Plagemann A, Reinagel H. Familial diabetes aggregation in type I diabetics: gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp Clin Endocrinol 1987; 89: 84-90.
  • 9 Dörner G, Plagemann A, Rückert J. et al. Teratogenetic maternofoetal transmission and prevention of diabetes susceptibility. Exp Clin Endocrinol 1988; 91: 247-258.
  • 10 Dörner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 1994; 26: 213-221.
  • 11 Dörner G, Plagemann A, Neu A, Rosenbauer J. Gestational diabetes as risk factor for type I childhoodonset diabetes in the offspring. Neuroendocrinol Lett 2000; 21: 355-359.
  • 12 Eriksson JG, Forsén T, Winter PD. et al. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 1999; 318: 427-431.
  • 13 Fewtrell MS, Doherty C, Cole TJ. et al. Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9–12 years. Diabetologia 2000; 43: 714-717.
  • 14 Francis DD, Meaney MJ. Maternal care and the development of stress response. Current Opinion in Neurobiology 1999; 09: 128-134.
  • 15 Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595-601.
  • 16 Harder T, Rodekamp E, Schellong K. et al. Birth weight and subsequent risk of type 2 diabetes: A meta-analysis. Am J Epidemiol 2007; 165: 849-857.
  • 17 Harder T, Schellong K, Stupin J. et al. Where is the evidence that low birth weight leads to subsequent obesity? (letter). Lancet 2007; 369: 1859.
  • 18 Harder T, Roepke K, Diller N. et al. Birth weight, early weight gain and subsequent risk of type 1 diabetes: systematic review and meta-analysis. Am J Epidemiol 2009; 169: 1428-1436.
  • 19 Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease – the hypothesis revisited. BMJ 1999; 319: 245-249.
  • 20 McCance DR, Pettitt DJ, Hanson RL. et al. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype?. BMJ 1994; 308: 942-945.
  • 21 Nerup J, Mandrup-Poulsen T, Molvig J. et al. Mechanisms of pancreatic ß-cell destruction in type I diabetes. Diabetes Care 1988; 11: 16-23.
  • 22 Petry CJ, Ozanne SE, Wang CL, Hales CN. Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clinical Science 1997; 93: 147-152.
  • 23 Pettitt DJ, Baird HR, Aleck KA. et al. Excessive obesity in offspring of pima indian women with diabetes during pregnancy. NEJM 1983; 308: 242-245.
  • 24 Plagemann A. Fetale Programmierung und funktionelle Teratologie. In: Ganten D, Ruckpaul R, Wauer RR. (Eds). Molekularmedizinische Grundlagen von fetalen und neontalen Erkrankungen. Berlin, Heidelberg: Springer; 2005: 325-344.
  • 25 Plagemann A, Heidrich I, Götz F. et al. Lifelong enhanced diabetes susceptibility and obesity after temporary intrahypothalamic hyperinsulinism during brain organization. Exp Clin Endocrinol 1992; 99: 91-95.
  • 26 Plagemann A, Heidrich I, Götz F. et al. Obesity and enhanced diabetes and cardiovascular risk in adult rats due to early postnatal overfeeding. Exp Clin Endocrinol 1992; 99: 154-158.
  • 27 Plagemann A, Harder T, Kohlhoff R. et al. Overweight and obesity in infants of mothers with longterm insulin-dependent diabetes or gestational diabetes. Int J Obesity 1997; 21: 451-456.
  • 28 Plagemann A, Harder T, Kohlhoff R. et al. Glucose tolerance and insulin secretion in infants of mothers with pregestational insulin-dependent diabetes mellitus or gestational diabetes. Diabetologia 1997; 40: 1094-1100.
  • 29 Plagemann A, Harder T, Rake A. et al. Hypothalamic insulin and neuropeptide Y in the offspring of gestational diabetic mother rats. Neuro Report 1998; 09: 4069-4073.
  • 30 Plagemann A, Harder T, Janert U. et al. Malformations of hypothalamic nuclei in hyperinsulinaemic offspring of gestational diabetic mother rats. Dev Neurosci 1999; 21: 58-67.
  • 31 Plagemann A, Harder T, Melchior K. et al. Elevation of hypothalamic neuropeptide Y-neurons in adult offspring of diabetic mother rats. Neuro Report 1999; 10: 3211-3216.
  • 32 Plagemann A, Harder T, Rake A. et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome X-like alterations in adulthood of neonatally overfed rats. Brain Res 1999; 836: 146-155.
  • 33 Plagemann A, Harder T, Rake A. et al. Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol 1999; 11: 541-546.
  • 34 Plagemann A, Harder T, Brunn M. et al. Hypothalamic POMC promoter methylation becomes altered by early overfeeding: An epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587: 4963-4976.
  • 35 Plagemann A, Roepke K, Harder T. et al. Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J Perinat Med 2010; 38: 393-400.
  • 36 Silverman BL, Rizzo T, Green OC. et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 1991; 40: 121-125.
  • 37 Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Diabetes Care 1995; 18: 611-617.
  • 38 Stettler NS, Zemel BS, Kumanyika S, Stallings VA. Infant weight gain in a multicenter, cohort study. Pediatrics 2002; 109: 194-199.
  • 39 Vanhala MJ, Vanhala PT, Keinänen-Kiukaanniemi SM. et al. Relative weight gain and obesity as a child predict metabolic syndrome as an adult. Int J Obesity 1999; 23: 656-659.
  • 40 Wilkin TJ. The accelerator hypothesis: weight gain is the missing link between Type I and Type II diabetes. Diabetologia 2001; 44: 914-922.