Adipositas - Ursachen, Folgeerkrankungen, Therapie 2016; 10(02): 93-97
DOI: 10.1055/s-0037-1617701
Übersichtsarbeit
Schattauer GmbH

Obesitas-Hypoventilationssyndrom (OHS)

Epidemiologie, Pathophysiologie, Diagnostik und FolgeerkrankungenObesity hypoventilation syndromeEpidemiology, pathophysiology, diagnostics and associated diseases
S. Böing
1   Klinik für Pneumologie und Allergologie, Schlaf- und Beatmungsmedizin, Bethanien Krankenhaus Solingen
,
W. J. Randerath
1   Klinik für Pneumologie und Allergologie, Schlaf- und Beatmungsmedizin, Bethanien Krankenhaus Solingen
› Author Affiliations
Further Information

Publication History

Publication Date:
29 December 2017 (online)

Zusammenfassung

Das Obesitas-Hypoventilationssyndrom (OHS) ist eine mit Adipositas assoziiert auftretende Störung des Atmungssystems. Sie ist definiert über eine Hyperkapnie im Wachzustand (chronisch erhöhter arterieller Kohlendioxidpartialdruck (PaCO2) >45 mmHg) bei Vorliegen eines Body-Mass-Index (BMI) ≥ 30 kg/m2. Andere Atmungsstörungen, die eine Hypoventilation erklären könnten, müssen zur Diagnosestellung eines OHS ausgeschlossen werden. Ein-schränkungen der Lungenfunktion, Störungen des zentralen Atemantriebs und schlafbezoge-ne Atmungsstörungen gelten als zentrale Faktoren in der Pathophysiologie des OHS. Vor dem Hintergrund der durch das OHS deutlichen gesteigerten Morbidität und Mortalität muss eine frühe Diagnosestellung und adäquate Therapie angestrebt werden. Nicht selten führen jedoch die unspezifische Symptomatik des OHS und die oftmals komorbiden schlafmedizinischen, metabolischen und kardiovaskulären Erkrankungen dazu, dass das OHS nicht oder erst verzögert diagnostiziert wird. Daher ist in der Risikoklientel die gezielte Suche nach dem Vorliegen einer Hyperkapnie im Wachzustand indiziert.

Summary

While obesity is associated with numerous cardiovascular and metabolic diseases, obesity hypoventilation syndrome (OHS) is one of the major diseases affecting the respiratory system. OHS is defined by chronic daytime hypercapnia (carbon dioxide partial pressure chronically elevated ≥45 mmHg) in the presence of a body mass index ≥30 kg/m². Before establishing the diagnosis of OHS, other reasons for alveolar hypoventilation have to be excluded. The pathophysiology of OHS includes reductions of lung function, impaired central ventilatory drive and sleep-related breathing disorders. Early diagnosis and initiation of an adequate therapy is crucial concerning the burden of morbidity and mortality associated with OHS. Identification of OHS is missed or delayed frequently, due to unspecific symptoms and comorbid sleep-related, cardiovascular and metabolic diseases. To improve identification of OHS patients, a systematic search for daytime hypercapnia is essential in patients at risk.

 
  • Literatur

  • 1 Kopelman PG. Obesity as a medical problem. Nature 2000; 404 (6778): 635-643.
  • 2 Randerath WJ. Obesity hypoventilation syndrome. Somnologie 2012; 16 (03) 154-159.
  • 3 American Academy of Sleep Medicine. International Classification of Sleep Disorders - Third Edition (ICSD-3) Westchester, Illinois: American Academy of Sleep Medicine. 2014
  • 4 Bulbul Y, Ayik S, Ozlu T, Orem A. Frequency and predictors of obesity hypoventilation in hospitalized patients at a tertiary health care institution. Ann Thorac Med 2014; 09 (02) 87-91.
  • 5 Akashiba T. et al. Clinical characteristics of obesity-hypoventilation syndrome in Japan: a multicenter study. Intern Med 2006; 45 (20) 1121-1125.
  • 6 Laaban JP, Chailleux E. Daytime hypercapnia in adult patients with obstructive sleep apnea syndrome in France, before initiating nocturnal nasal continuous positive airway pressure therapy. Chest 2005; 127 (03) 710-715.
  • 7 Shetty S, Parthasarathy S. Obesity Hypoventilation Syndrome. Curr Pulmonol Rep 2015; 04 (01) 42-55.
  • 8 Böing S, Randerath WJ. Chronic hypoventilation syndromes and sleep-related hypoventilation. J Thorac Dis 2015; 07 (08) 1273-1285.
  • 9 Naimark A, Cherniack RM. Compliance of the respiratory system and its components in health and obesity. J Appl Physiol 1960; 15: 377-382.
  • 10 Piper AJ, Grunstein RR. Big breathing: the complex interaction of obesity, hypoventilation, weight loss, and respiratory function. J Appl Physiol 2010; 108 (01) 199-205.
  • 11 Resta O, Foschino-Barbaro MP, Bonfitto P. et al. Prevalence and mechanisms of diurnal hypercapnia in a sample of morbidly obese subjects with obstructive sleep apnoea. Respir Med 2000; 94 (03) 240-246.
  • 12 Pankow W, Podszus T, Gutheil T. et al. Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity. J Appl Physiol 1998; 85 (04) 1236-1243.
  • 13 Ferretti A, Giampiccolo P, Cavalli A. et al. Expiratory flow limitation and orthopnea in massively obese subjects. Chest 2001; 119 (05) 1401-1408.
  • 14 Chlif M, Keochkerian D, Choquet D. et al. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir Physiol Neurobiol 2009; 168 (03) 198-202.
  • 15 Jonville S, Delpech N, Denjean A. Contribution of respiratory acidosis to diaphragmatic fatigue at exercise. Eur Respir J 2002; 19 (06) 1079-1086.
  • 16 Monneret D, Borel JC, Pepin JL. et al. Pleiotropic role of IGF-I in obesity hypoventilation syndrome. Growth Horm IGF Res 2010; 20 (02) 127-133.
  • 17 Weiner P, Waizman J, Weiner M. et al. Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory muscle performance. Thorax 1998; 53 (01) 39-42.
  • 18 Piper AJ, Grunstein RR. Big breathing: the complex interaction of obesity, hypoventilation, weight loss, and respiratory function. J Appl Physiol (1985) 2010; 108 (01) 199-205.
  • 19 Balachandran JS, Masa JF, Mokhlesi B. Obesity Hypoventilation Syndrome Epidemiology and Diagnosis. Sleep Med Clin 2014; 09 (03) 341-347.
  • 20 Kaw R, Hernandez AV, Walker E. et al. Determinants of hypercapnia in obese patients with obstructive sleep apnea: a systematic review and metaanalysis of cohort studies. Chest 2009; 136 (03) 787-796.
  • 21 Hlavac MC, Catcheside PG, McDonald R. et al. Hypoxia impairs the arousal response to external resistive loading and airway occlusion during sleep. Sleep 2006; 29 (05) 624-631.
  • 22 Steier J, Jolley CJ, Seymour J. et al. Neural respiratory drive in obesity. Thorax 2009; 64 (08) 719-725.
  • 23 Macavei VM. et al. Diagnostic predictors of obesity-hypoventilation syndrome in patients suspected of having sleep disordered breathing. J Clin Sleep Med 2013; 09 (09) 879-884.
  • 24 Zwillich CW. et al. Decreased hypoxic ventilatory drive in the obesity-hypoventilation syndrome. Am J Med 1975; 59 (03) 343-348.
  • 25 Lin CC. Effect of nasal CPAP on ventilatory drive in normocapnic and hypercapnic patients with obstructive sleep apnoea syndrome. Eur Respir J 1994; 07 (11) 2005-2010.
  • 26 Tankersley CG, O’Donnell C, Daood MJ. et al. Leptin attenuates respiratory complications associated with the obese phenotype. J Appl Physiol 1998; 85 (06) 2261-2269.
  • 27 Phipps PR, Starritt E, Caterson I, Grunstein RR. Association of serum leptin with hypoventilation in human obesity. Thorax 2002; 57 (01) 75-76.
  • 28 Campo A, Fruhbeck G, Zulueta JJ. et al. Hyperleptinaemia, respiratory drive and hypercapnic response in obese patients. Eur Respir J 2007; 30 (02) 223-231.
  • 29 Redolfi S, Corda L, La Piana G. et al. Long-term non-invasive ventilation increases chemosensitivity and leptin in obesity-hypoventilation syndrome. Respir Med 2007; 101 (06) 1191-1195.
  • 30 Pepin JL, Borel JC, Janssens JP. Obesity hypoventilation syndrome: an underdiagnosed and under-treated condition. Am J Respir Crit Care Med 2012; 186 (12) 1205-1207.
  • 31 Mokhlesi B, Tulaimat A, Faibussowitsch I. et al. Obesity hypoventilation syndrome: prevalence and predictors in patients with obstructive sleep apnea. Sleep Breath 2007; 11 (02) 117-124.
  • 32 Manthous CA, Mokhlesi B. Avoiding Management Errors in Patients with Obesity Hypoventilation Syndrome. Ann Am Thorac Soc 2016; 13 (01) 109-114.
  • 33 Manuel AR, Hart N, Stradling JR. Is a raised bicarbonate, without hypercapnia, part of the physiologic spectrum of obesity-related hypoventilation?. Chest 2015 147 (02) 362-368.
  • 34 Storre JH, Magnet FS, Dreher M, Windisch W. Transcutaneous monitoring as a replacement for arterial PCO(2) monitoring during nocturnal non-invasive ventilation. Respir Med 2011; 105 (01) 143-150.
  • 35 Manuel AR, Hart N, Stradling JR. Correlates of obesity-related chronic ventilatory failure. BMJ Open Respir Res 2016; 03 (01) e000110.
  • 36 Kaul S. et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring) 2012; 20 (06) 1313-1318.
  • 37 Borel JC. et al. Endothelial dysfunction and specific inflammation in obesity hypoventilation syndrome. PLoS One 2009; 04 (08) e6733.
  • 38 Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016
  • 39 Kauppert CA, Dvorak I, Kollert F. et al. Pulmonary hypertension in obesity-hypoventilation syndrome. Respir Med 2013; 107 (12) 2061-2070.
  • 40 Nowbar S. et al. Obesity-associated hypoventilation in hospitalized patients: prevalence, effects, and outcome. Am J Med 2004; 116 (01) 1-7.
  • 41 Hodgson LE, Murphy PB. Update on clinical trials in home mechanical ventilation. J Thorac Dis 2016; 08 (02) 255-267.