Thromb Haemost 2005; 93(06): 1196-1197
DOI: 10.1055/s-0037-1616629
Case Report
Schattauer GmbH

Novel γ230 Asn→Asp substitution in fibrinogen Middlemore associated hypofibrinogenaemia

Stephen O. Brennan
1   George Molecular Pathology Laboratory, Christchurch School of Medicine, Christchurch, New Zealand
,
Campbell R. Sheen
1   George Molecular Pathology Laboratory, Christchurch School of Medicine, Christchurch, New Zealand
,
Peter M.
1   George Molecular Pathology Laboratory, Christchurch School of Medicine, Christchurch, New Zealand
› Author Affiliations
Further Information

Publication History

Received 09 December 2004

Accepted after resubmission 09 March 2005

Publication Date:
11 December 2017 (online)

 

 
  • References

  • 1 Henschen AH, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Blood Coagulation, Vol 13. Zwaal RFA, Hemker HC, eds. Amsterdam: Elsevier Science Publishers BV 1986; 171-241
  • 2 Doolittle RF. The molecular biology of fibrin. In: The Molecular Basis of Blood Diseases. Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H, eds. Philadelphia: WB Saunders Company: 1994: 701-26
  • 3 Marchant RE, Barb MD, Shainoff R. et al Three dimensional structure of human fibrinogen under aqueous conditions visualised by atomic force microscopy. Thromb Haemost 1997; 77: 1048-51
  • 4 Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997; 389: 455-62
  • 5 Yee VC, Pratt KP, Cote HCF. et al Crystal structure of a 30 kDa C-terminal fragment from the g chain of human fibrinogen. Structure 1997; 5: 125-38
  • 6 Yang Z, Mochalkin I, Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proc Natl Acad Sci USA 2000; 97: 14156-61
  • 7 Huang S, Mulvhill ER, Farrell DH. et al Biosynthesis of human fibrinogen. Subunit interactions and potential intermediates in assembly. J Biol Chem 1993; 268: 8919-26
  • 8 Huang S, Cao Z, Chung DW. et al The role of β g and α g complexes in the assembly of human fibrinogen. J Biol Chem 1996; 271: 27942-7
  • 9 Maghzal GJ, Brennan SO, Homer VM. et al The molecular mechanisms of congenital hypofibrinogenaemia. Cell Mol Life Sci 2004; 61: 1427-38
  • 10 Hanss M, Biot FA. A database for human fibrinogen variants. Ann N Y Acad Sci 2001; 86: 154-63 http://www.geht.org/databaseang/fibrinogen
  • 11 Brennan SO, Hammonds B, George PM. Aberrant hepatic processing causes removal of activation peptide and primary polymerisation site from fibrinogen Canterbury Canterbury (Aa20Val→ Asp). J Clin Invest 1995; 96: 2854-8
  • 12 Brennan SO. Electrospray ionisation analysis of human fibrinogen. Thromb Haemost 1997; 78: 1055-8
  • 13 Brennan SO. The separation of globin chains by high pressure cation exchange chromatography. Hemoglobin 1986; 9: 53-63
  • 14 Brennan SO, Fellowes AP, Faed JM. et al Hypofibrinogenaemia in an individual with 2 coding (γ 82 A → G and B β 235 P → L) and 2 noncoding mutations. Blood 2000; 95: 1709-13
  • 15 McCracken AA, Brodsky JL. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 2003; 9: 868-77
  • 16 http://www.bmsc.washington.edu/people/teller/ fbg_ident.html