Thromb Haemost 2001; 86(01): 420-426
DOI: 10.1055/s-0037-1616240
Research Article
Schattauer GmbH

Apoptosis as a Determinant of Atherothrombosis

Alain Tedgui
1   INSERM U541 and Institut Fédératif de Recherche “Circulation-Paris 7”, Hôpital Lariboisière, Paris, France
,
Ziad Mallat
1   INSERM U541 and Institut Fédératif de Recherche “Circulation-Paris 7”, Hôpital Lariboisière, Paris, France
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

Clinical manifestations of atherosclerosis are the consequences of atherosclerotic plaque rupture that triggers thrombus formation. Tissue factor (TF) is a key element in the initiation of the coagulation cascade and is crucial in thrombus formation following plaque disruption. TF activity is highly dependent on the presence of phosphatidylserine (PS), an anionic phospholipid that is redistributed on the cell surface during apoptotic death conferring a potent procoagulant activity to the apoptotic cell. Apoptosis occurs in the human atherosclerotic plaque and shed membrane apoptotic microparticles rich in PS are produced in considerable amounts within the lipid core. These microparticles carry almost all TF activity and are responsible for the procoagulant activity of the plaque. Moreover, luminal endothelial cell apoptosis might be responsible for thrombus formation on eroded plaques without rupture. Apoptosis might also play a major role in blood thrombogenicity via circulating procoagulant microparticles that are found at high levels in patients with acute coronary syndromes.

 
  • References

  • 1 Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. Parts I and II. N Engl J Med 1992; 326: 242-50 310-88.
  • 2 Fuster V. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994; 90: 2126-46.
  • 3 Lee RT, Libby P. The unstable atheroma. Arterioscler Thromb Vasc Biol 1997; 17: 1859-67.
  • 4 Annex BH, Denning SM, Channon KM, Sketch MHJ, Stack RS, Morrisey JH, Peters KG. Defferential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation 1995; 91: 619-22.
  • 5 Toschi V, Gallo G, Lettino M, Fallon JT, Gertz SD, Fernandez-Ortiz A, Cheserbo JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ. Tissue factor modulates thrombogenicity of human atherosclerotic plaques. Circulation 1997; 95: 594-9.
  • 6 Moreno PR, Bernardi VH, Lopezcuellar J, Murcia AM, Palacios IF, Gold HK, Mehran R, Sharma SK, Nemerson Y, Fuster V, Fallon JT. Macrophages, smooth muscle cells, and tissue factor in unstable angina: Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 1996; 94: 3090-7.
  • 7 Marmur JD, Thiruvikraman SV, Fife BS, Guha A, Sharma SK, Ambrose JA, Fallon JT, Nemerson Y, Taubman MB. The identification of active tissue factor in human coronary atheroma. Circulation 1996; 94: 1226-32.
  • 8 Ardissino D, Merlini PA, Ariens R, Coppola R, Bramucci E, Mannucci PM. Tissue-factor antigen and activity in human coronary atherosclerotic plaques. Lancet 1997; 349: 769-71.
  • 9 Pei G, Powers DD, Lentz BR. Specific contribution of different phospholipid surfaces to the activation of prothrombin by the fully assembled prothrombinase. J Biol Chem 1993; 268: 3226-33.
  • 10 Martin SJ, Reutelingsperger CPM, McGahon AJ, Rader JA, van Schie RCA, LaFace DM, Green DR. Early redistribution of plasma membrane phosphatidylserine is ageneral feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995; 182: 1545-56.
  • 11 Kornbluth RS. The immunological potential of apoptotic debris produced by tumor cells and during HIV infection. Immunol Lett 1994; 43: 125-32.
  • 12 Casciola-Rosen L, Rosen A, Petri M, Schlissel M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci USA 1996; 93: 1624-9.
  • 13 Aupeix K, Toti F, Satta N, Bischoff P, Freyssinet JM. Oxysterols induce membrane procoagulant activity in monocytic THP-1 cells. Biochem J 1996; 314: 1027-33.
  • 14 Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J, Eschwège V, Hedman H, Freyssinet JM. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 1994; 153: 3245-55.
  • 15 Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the committee on vascular lesions of the council on arteriosclerosis, american heart association. Circulation 1995; 92: 1355-74.
  • 16 Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262-75.
  • 17 Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657-71.
  • 18 Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56-62.
  • 19 Fuster V, Fayad ZA, Badimon JJ. Acute coronary syndromes: biology. Lancet 1999; 353 (Suppl. 02) SII5-9.
  • 20 Björkerud S, Björkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996; 149: 367-80.
  • 21 Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol 1996; 16: 19-27.
  • 22 Mallat Z, Ohan J, Lesèche G, Tedgui A. Colocalization of CPP-32 with apoptotic cells in human atherosclerotic plaques. Circulation 1997; 96: 424-8.
  • 23 Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J. Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 1997; 130: 17-27.
  • 24 Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992; 71: 850-8.
  • 25 Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 1994; 14: 230-4.
  • 26 Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 1999; 281: 921-6.
  • 27 Felton CV, Crook D, Davies MJ, Oliver MF. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol 1997; 17: 1337-45.
  • 28 Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493-503.
  • 29 Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994; 90: 775-8.
  • 30 Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis – Implications for plaque rupture. Arteriosclerosis Thrombosis and Vascular Biology 1996; 16: 1070-3.
  • 31 Barger AC, Beeuwkes Rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 1984; 310: 175-7.
  • 32 Barger AC, Beeuwkes Rd. Rupture of coronary vasa vasorum as a trigger of acute myocardial infarction. Am J Cardiol 1990; 66: 41G-43G.
  • 33 Virmani R, Burke AP, Farb A. Plaque rupture and plaque erosion. Thromb Haemost 1999; 82 (Suppl. 01) 1-3.
  • 34 Farb A, Burke AP, Tang AL, Liang YH, Mannan P, Smialek J, Virmani R. Coronary plaque erosion without rupture into a lipid core: A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93: 1354-63.
  • 35 Fernandez-Ortiz A, Badimon JJ, Falk E, Fuster V, Meyer B, Mailhac A, Weng D, Shah PK, Badimon L. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23: 1562-9.
  • 36 Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human athero-sclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 1999; 99: 348-53.
  • 37 Banner DW, D’Arcy A, Chene C, Winkler FK, Guha A, Konigsberg WH, Nemerson Y, Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 1996; 380: 41-6.
  • 38 Rentrop KP. Thrombi in acute coronary syndromes: revisited and revised. Circulation 2000; 101: 1619-26.
  • 39 Badimon JJ, Lettino M, Toschi V, Fuster V, Berrozpe M, Chesebro JH, Badimon L. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 1999; 99: 1780-7.
  • 40 Girelli D, Russo C, Ferraresi P, Olivieri O, Pinotti M, Friso S, Manzato F, Mazzucco A, Bernardi F, Corrocher R. Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 2000; 343: 774-80.
  • 41 Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 1997; 89: 1121-32.
  • 42 Virchow R. Cellular Pathology as Based Upon Physiological and Pathological Histology. In: Birmingham AL. Classics of Medicine Library. 1858. p 361.
  • 43 Thomas WA, Reiner JM, Florentin FA, Lee KT, Lee WM. Population dynamics of arterial smooth muscle cells. V. Cell proliferation and cell death during initial three months in atherosclerotic lesions induced in swine by hypercholesterolemic diet and intimal trauma. Exp Mol Pathol 1976; 24: 360-74.
  • 44 Cliff WJ. The aortic tunica media in aging rats. Exp Mol Pathol 1970; 13: 172-89.
  • 45 Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-57.
  • 46 Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, Henson PM. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 1992; 149: 4029-35.
  • 47 Majno G, Joris I. Apoptosis, oncosis, and necrosis. Am J Pathol 1995; 146: 3-15.
  • 48 Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 1998; 82: 1111-29.
  • 49 Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91: 2703-11.
  • 50 Geng Y-J, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1β-converting enzyme. Am J Pathol 1995; 147: 251-66.
  • 51 Han DKM, Haudenschild CC, Hong MK, Tinkle BT, Leon MB, Liau G. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 1995; 147: 267-77.
  • 52 Kockx MM, Demeyer GRY, Muhring J, Bult H, Bultinck J, Herman AG. Distribution of cell replication and apoptosis in atherosclerotic plaques of cholesterol-fed rabbits. Atherosclerosis 1996; 120: 115-24.
  • 53 Hegyi L, Skepper JN, Cary NR, Mitchinson MJ. Foam cell apoptosis and the development of the lipid core of human atherosclerosis. J Pathol 1996; 180: 423-42.
  • 54 Cai W, Devaux B, Schaper W, Schaper J. The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis 1997; 131: 177-86.
  • 55 Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000; 157: 1259-68.
  • 56 Kockx MM, De Meyer GRY, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 1998; 97: 2307-15.
  • 57 Mallat Z, Tedgui A. Apoptosis in the vasculature: mechanisms and functional importance. Br J Pharmacol 2000; 130: 947-62.
  • 58 Mallat Z, Heymes C, Ohan J, Faggin E, Lesèche G, Tedgui A. Expression of interleukin-10 in human atherosclerotic plaques. Relation to inducible nitric oxide synthase expression and cell death. Arterioscler Thromb Vasc Biol 1999; 19: 611-6.
  • 59 Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995; 95: 2266-74.
  • 60 Bennett MR, Evan GI, Newby AC. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-γ, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ Res 1994; 74: 525-36.
  • 61 Bennett MR, Littlewood TD, Schwartz SM, Weissberg PL. Increased sensitivity of human vascular smooth muscle cells from atherosclerotic plaques to p53-mediated apoptosis. Circ Res 1997; 81: 591-9.
  • 62 Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 1998; 4: 222-7.
  • 63 Schaub FJW, Coats SA, Seifert RA, Ramachandran RK, Han DKM, Schwartz SM, Bowen-Pope DF. Regulated overexpression of the Fas-associated death domain (FADD) protein in seeded vascular smooth muscle cells causes apoptosis followed by recruitment of macrophages. Circulation 1998; 98 (suppl. I): I-597 (abstr.).
  • 64 Bauriedel G, Schluckebier S, Hutter R, Welsch U, Kandolf R, Lüderitz B, Prescott MF. Apoptosis in restenosis versus stable-angina atherosclerosis. Implications for the pathogenesis of restenosis. Arterioscler Thromb Vasc Biol 1998; 18: 1132-9.
  • 65 Gordon D, Reidy MA, Benditt EP, Schwartz SM. Cell proliferation in human coronary arteries. Proc Natl Acad Sci USA 1990; 87: 4600-4.
  • 66 Brandl R, Richter T, Haug K, Wilhelm MG, Maurer PC, Nathrath W. Topographic analysis of proliferative activity in carotid endarterectomy specimens by immunocytochemical detection of the cell cycle-related antigen Ki-67. Circulation 1997; 96: 3360-8.
  • 67 Chang MK, Bergmark C, Laurila A, Horkko S, Han KH, Friedman P, Dennis EA, Witztum JL. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA 1999; 96: 6353-8.
  • 68 Flynn PD, Byrne CD, Baglin TP, Weissberg PL, Bennett MR. Thrombin generation by apoptotic vascular smooth muscle cells. Blood 1997; 89: 4378-84.
  • 69 Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89: 2429-42.
  • 70 Aupeix K, Hugel B, Martin T, Bischoff P, Lill H, Pasquali JL, Freyssinet JM. The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J Clin Invest 1997; 99: 1546-54.
  • 71 Zhang J, Driscoll TA, Hannun YA, Obeid LM. Regulation of membrane release in apoptosis. Biochem J 1998; 334: 479-85.
  • 72 Zhang J, Reedy MC, Hannun YA, Obeid LM. Inhibition of caspases inhibits the release of apoptotic bodies: Bcl-2 inhibits the initiation of formation of apoptotic bodies in chemotherapeutic agent-induced apoptosis. J Cell Biol 1999; 145: 99-108.
  • 73 Fourcade O, Simon MF, Viode C, Rugani FL, Ragab A, Fournie B, Sarda L, Chap H. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995; 80: 919-27.
  • 74 Weiss HJ. Scott syndrome: a disorder of platelet coagulant activity. Sem Hematol 1994; 31: 312-9.
  • 75 Bach R, Rifkin DB. Expression of tissue factor procoagulant activity: regulation by cytosolic calcium. Proc Natl Acad Sci USA 1990; 87: 6995-9.
  • 76 Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: 1276-82.
  • 77 Tricot O, Mallat Z, Heymes C, Lesèche G, Tedgui A. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation 2000; 101: 2450-3.
  • 78 Dimmeler S, Hermann C, Zeiher AM. Apoptosis of endothelial cells. Contribution to the pathophysiology of atherosclerosis? Eur Cytokine Netw 1998; 9: 697-8.
  • 79 Constantinides P, Harkey M. Electron microscopic exploration of human endothelium in step-serial sections of early and advanced atherosclerotic lesions. Ann N Y Acad Sci 1990; 598: 113-24.
  • 80 Burrig KF. The endothelium of advanced atherosclerotic plaques in humans. Arterioscler Thromb 1991; 11: 1678-89.
  • 81 Giesen PL, Rauch U, Bohrmann B, Kling D, Roque M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311-5.
  • 82 Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, Tedgui A. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101: 841-3.
  • 83 Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 1999; 93: 2951-8.
  • 84 Bordron A, Dueymes M, Levy Y, Jamin C, Leroy JP, Piette JC, Shoenfeld Y, Youinou PY. The binding of some human antiendothelial cell antibodies induces endothelial cell apoptosis. J Clin Invest 1998; 101: 2029-35.
  • 85 Pittoni V, Isenberg D. Apoptosis and antiphospholipid antibodies. Semin Arthritis Rheum 1998; 28: 163-78.
  • 86 Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, Dignat-George F. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 1999; 104: 93-102.
  • 87 Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem 1999; 274: 23111-8.
  • 88 Scoazec A, Merval R, Milliez P, Habib A, Beaufils P, Henry P, Freyssinet JM, Tedgui A, Mallat Z. Activation of human endothelial cells by circulating microparticles from patients with acute coronary syndromes. Circulation 2000; 102: II-777 (abstr.).