Thromb Haemost 2001; 86(01): 308-315
DOI: 10.1055/s-0037-1616228
Research Article
Schattauer GmbH

Interendothelial Junctions and their Role in the Control of Angiogenesis, Vascular Permeability and Leukocyte Transmigration

Elisabetta Dejana
1   Istituto di Ricerche Farmacologiche Mario Negri
2   FIRC Institute of Molecular Oncology, Milano, Italy
3   Università degli Studi dell’Insubria, Dipartimento di Scienze Cliniche e Biologiche, Facoltà di Medicina e Chirurgia, Varese, Italy
,
Raffaella Spagnuolo
1   Istituto di Ricerche Farmacologiche Mario Negri
2   FIRC Institute of Molecular Oncology, Milano, Italy
,
Gianfranco Bazzoni
1   Istituto di Ricerche Farmacologiche Mario Negri
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

Endothelial cell-cell junctions play an important role in vascular hemostasis. The two junctional proteins VE-cadherin and JAM-1 are localized at adherens and tight junctions, respectively. VE-cadherin is only expressed by endothelial cells, suggesting that it can exert cell specific function. Absence of VE-cadherin or blocking of its adhesive activity prevents a normal organization of new vascular structures, suggesting that VE-cadherin may be a molecular target of antiangiogenic therapy. In addition, the ability of permeability-increasing agents and adherent leukocytes to modify VE-cadherin/catenin organization may be related to a role in the control of vascular permeability and leukocyte infiltration. JAM-1 is an integral membrane protein expressed in endothelial and epithelial cells. Its extracellular domain can dimerize and bind homophilically. The intracellular domain (and in particular a PDZ-binding motif) enables JAM-1 to interact with structural and signaling proteins. Study of the molecular interactions of JAM-1 may help explain mechanisms of JAM-mediated function, such as control of paracellular permeability and leukocyte transmigration.

 
  • References

  • 1 Lampugnani MG, Dejana E. Interendothelial junctions: structure, signalling and functional roles. Curr Opin Cell Biol 1997; 9: 674-82.
  • 2 Bazzoni G, Dejana E, Lampugnani MG. Endothelial adhesion molecules in the development of vascular tree: the garden of forking paths. Curr Opin Cell Biol 1999; 11: 573-81.
  • 3 Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB J 1995; 9: 910-8.
  • 4 Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345-57.
  • 5 Gumbiner BM. Regulation of cadherin adhesive activity. J Cell Biol 2000; 148: 399-404.
  • 6 Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grubel G, Legrand JF, Als Nielsen J, Colman DR, Hendrickson WA. Structural basis of cell-cell adhesion by cadherins [see comments]. Nature 1995; 374: 327-37.
  • 7 Takeichi M. Cadherins. A molecular family important in selective cell-cell adhesion. Annu Rev Biochem 1990; 59: 237-52.
  • 8 Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem 1996; 61: 514-23.
  • 9 Bazzoni G, Martinez Estrada OM, Dejana E. Molecular structure and functional role of vascular tight junctions. Trends Cardiovasc Med 1999; 9: 147-52.
  • 10 Tsukita S, Furuse M, Itoh M. Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 1999; 11: 628-33.
  • 11 Gumbiner B. Carcinogenesis: a balance between beta-catenin and APC. Curr Biol 1997; 7: R443-6.
  • 12 Dejana E. Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 1997; 100: S7-10.
  • 13 Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angelillo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147-57.
  • 14 Gumbiner BM. Breaking through the tight junction barrier. J Cell Biol 1993; 123: 1631-3.
  • 15 Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 1998; 60: 121-42.
  • 16 Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disrruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 1996; 134: 1031-49.
  • 17 Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight unctions. J Cell Biol 1993; 123: 1777-88.
  • 18 Bamforth SD, Kniesel U, Wolburg H, Engelhardt B, Risau W. A dominant mutant of occludin disrupts tight junction structure and function. J Cell Sci 1999; 112: 1879-88.
  • 19 Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 1998; 141: 397-408.
  • 20 Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11: 4131-42.
  • 21 Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players?. Trend Cell Biol 1999; 9: 268-73.
  • 22 Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibro-blasts. J Cell Biol 1998; 143: 391-401.
  • 23 Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142: 117-27.
  • 24 Newman PJ. The biology of PECAM-1. J Clin Invest 1997; 99: 3-8.
  • 25 Bardin N, Frances V, Lesaule G, Horschowski N, George F, Sampol J. Identification of the S-Endo 1 endothelial-associated antigen. Biochem Biophys Res Commun 1996; 218: 210-6.
  • 26 Garlanda C, Berthier R, Garin J, Stoppacciaro A, Ruco L, Vittet D, Gulino D, Matteucci C, Mantovani A, Vecchi A, Dejana E. Characterization of MEC 14.7, a new monoclonal antibody recognizing mouse CD34: a useful reage for identifying and characterizing blood vessels and hematopoietic precursors. Eur J Cell Biol 1997; 73: 368-77.
  • 27 Gougos A, Letarte M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J Immunol 1988; 141: 1925-33.
  • 28 Telò P, Breviario F, Huber P, Panzeri C, Dejana E. Identification of a novel cadherin (vascular endothelial cadherin-2) located at intercellular junctions in endothelial cells. J Biol Chem 1998; 273: 17565-72.
  • 29 Breier G, Breviario F, Caveda L, Berthier R, Schnurch U, Gotsch D, Vestweber D, Risau W, Dejana E. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 1996; 87: 630-42.
  • 30 Huber P, Dalmon J, Engiles J, Breviario F, Gory S, Siracusa LD, Buchberg AM, Dejana E. Genomic structure and chromosomal mapping of the mouse VE-cadherin gene (Cdh5). Genomics 1996; 32: 21-8.
  • 31 Gory S, Vernet M, Laurent M, Dejana E, Dalmon J, Huber P. The VEcadherin promotor directs endothelial-specific expression in transgenic mice. Blood 1999; 93: 184-92.
  • 32 Zhou Y, Fisher SJ, Janatpour M, Genbacev O, Dejana E, Wheelock M, Damsky CH. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 1997; 99: 2139-51.
  • 33 Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point endothelial and hemopoietic lineages. Development 1998; 125: 1747-57.
  • 34 Breviario F, Caveda L, Corada M, Martin-Padura I, Navarro P, Golay J, Introna M, Gulino D, Lampugnani MG, Dejana E. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5) an endothelial specific cadherin. Arterioscler Thromb Vasc Biol 1995; 15: 1229-39.
  • 35 Takeichi M. Cadherin in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 1993; 5: 806-11.
  • 36 Navarro P, Caveda L, Breviario F, Mandoteanu I, Lampugnani MG, Dejana E. Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270: 30965-72.
  • 37 Ozawa M, Kemler R. The membrane-proximal region of the E-cadherin cytoplasmic domain prevents dimerization and negatively regulates adhesion activity. J Cell Biol 1998; 142: 1605-13.
  • 38 Yap AS, Niessen CM, Gumbiner BM. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 1998; 141: 779-89.
  • 39 Lampugnani MG, Corada M, Andriopoulou P, Esser S, Risau W, Dejana E. Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J Cell Sci 1997; 110: 2065-77.
  • 40 Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB. Inhibition of RhoA by p120 catenin. Nature Cell Biology 2000; 2: 637-44.
  • 41 Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, Zhang Z. Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 1994; 14: 8333-42.
  • 42 Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E. Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 1996; 98: 886-93.
  • 43 Watabe M, Nagafuchi A, Tsukita S, Takeichi M. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol 1994; 127: 247-56.
  • 44 Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 1995; 129: 203-17.
  • 45 Nusse R. A versatile transcriptional effector of Wingless signaling. Cell 1997; 89: 321-3.
  • 46 Ben-Ze’ev A, Geiger B. Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 1998; 10: 629-39.
  • 47 Bullions LC, Levine AJ. The role of beta-cadenin in cell adhesion, signal transduction, and cancer. Curr Opin Cell Biol 1998; 10: 81-7.
  • 48 Zhurinnsky J, Shtutman M, Ben-Ze’ev A. Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 2000; 113: 3127-39.
  • 49 Polakis P. The oncogenic activation of beta-catenin. Current Opinion in Genet Dev 1999; 9: 15-21.
  • 50 Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522-7.
  • 51 Larue L, Antos C, Butz S, Huber O, Delmas V, Dominis M, Kemler R. A role for cadherins in tissue formation. Development 1996; 122: 3185-94.
  • 52 Goichberg P, Geiger B. Direct involvement of N-cadherin-mediated signaling in muscle differentiation. Mol Biol Cell 1998; 9: 3119-31.
  • 53 Kim JB, Islam S, Kim YJ, Prudoff RS, Sass KM, Wheelock MJ, Johnson KR. N-cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased mobility. J Cell Biol 2000; 151: 1193-205.
  • 54 Vittet D, Buchou T, Schweitzer A, Dejana E, Huber P. Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci USA 1997; 94: 6273-8.
  • 55 Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 1997; 181: 64-78.
  • 56 Hoschuetzky H, Aberle H, Kemler R. Beta-Catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 1994; 127: 1375-80.
  • 57 Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 1999; 96: 9815-20.
  • 58 Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Vestweber D. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 1997; 110: 583-8.
  • 59 Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 1996; 16: 488-96.
  • 60 Andriopoulou P, Navarro P, Zanetti A, Lampugnani MG, Dejana E. Hista-mine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arterioscler Thromb Vasc Biol 1999; 19: 2286-97.
  • 61 Wong RK, Baldwin AL, Heimark RL. Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. Am J Physiol 1999; 276: H736-H748.
  • 62 Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ. SHP2 association with VE-cadherin complexesin human endothelial cells is regulated by thrombin. J Biol Chem 2000; 275: 5983-6.
  • 63 Del Maschio A, De Luigi A, Martin-Padura I, Brockhaus M, Bartfai T, Fruscella P, Adorini L, Martino GV, Furlan R, De Simoni MG, Dejana E. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to Junctional Adhesion Molecule (JAM). J Exp Med 1999; 190: 1351-6.
  • 64 Allport JR, Muller WA, Luscinskas FW. Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol 2000; 148: 203-16.
  • 65 Bach TL, Barsigian C, Chalupowicz DG, Busler D, Yaen CH, Grant DS, Martinez J. VE-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 1998; 238: 324-34.
  • 66 Bach TL, Barsigian C, Yaen CH, Martinez J. Endothelial cell VE-cadherin functions as a receptor for the beta 15-42 sequence of fibrin. J Biol Chem 1998; 273: 30719-28.
  • 67 Liao F, Li Y, O’Connor W, Zanetta L, Bassi R, Santiago A, Overholser J, Hopper A, Mignatti P, Dejana E, Hicklin DJ, Bohlen P. Monoclonal antibody to vascular endothelial (VE)-cadherin is a potent inhibitor of angiogenesis, tumor growth and metastasis. Cancer Res 2000; 60: 6805-10.
  • 68 Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000; 113: 2363-74.
  • 69 Liang TW, DeMarco RA, Mrsny RJ, Gurney A, Gray A, Hooley Aaron HL, Huang A, Klassen T, Tumas DB, Fong S. Characterization of huJAM: evidence for involvement in cell-cell contact and tight junction regulation. Am J Physiol Cell Physiol 2000; 279: 1733-43.
  • 70 Malergue F, Galland F, Martin F, Mansuelle P, Aurrand-Lions M, Naquet P. A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol Immunol 1998; 35: 1111-9.
  • 71 Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, Iwamatsu A, Kita T. Combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 1999; 163: 553-7.
  • 72 Williams LA, Martin-Padura I, Dejana E, Hogg N, Simmons DL. Identification and characterisation of human junctional adhesion molecule (JAM). Mol Immunol 1999; 36: 1175-88.
  • 73 Sobocka MB, Sobocki T, Banerjee P, Weiss C, Rushbrook JI, Norin AJ, Hartwig J, Salifu MO, Markell MS, Babinska A, Ehrlich YH, Kornecki E. Cloning of the human platelet F11 receptor: A cell adhesion molecule member of the immunoglobulin superfamily involved in platelet aggregation. Blood 2000; 95: 2600-9.
  • 74 Aurrand-Lions MA, Duncan L, Ballestrem C, Imhof BA. JAM-2, a novel Immunoglobulin Superfamily Molecule, expressed by endothelial and lymphatic cells. J Biol Chem 2001; 276: 2733-42.
  • 75 Palmeri D, Van Zante A, Huang CC, Hemmerich S, Rosen SD. Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 2000; 275: 19139-45.
  • 76 Cunningham SA, Arrate MP, Rodriguez JM, Bjercke RJ, Vanderslice P, Morris AP, Brock TA. A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J Biol Chem 2000; 275: 34750-6.
  • 77 Chretien I, Marcuz A, Courtet M, Katevuo K, Vainio O, Heath JK, White SJ, Du Pasquier L. CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur J Immunol 1998; 28: 4094-104.
  • 78 Aurrand-Lions MA, Duncan L, Du Pasquier L, Imhof BA. Cloning of JAM-2 and JAM-3: An emerging junctional adhesion molecular family?. Current Topics in Microbiology & Immunology 2000; 251: 91-8.
  • 79 Bazzoni G, Martinez-Estrada OM, Mueller F, Nelboeck P, Schmid G, Bartfai T, Dejana E, Brockhaus M. Homophilic interaction of junctional adhesion molecule. J Biol Chem 2000; 275: 30970-6.
  • 80 Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Crompton A, Chan AC, Anderson JM, Cantley LC. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997; 275: 73-7.
  • 81 Fanning AS, Anderson JM. Protein modules as organizers of membrane structure. Curr Opin Cell Biol 1999; 11: 432-9.
  • 82 Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999; 147: 1351-63.
  • 83 Furuse M, Itoh M, Hirase T, Nagasuchi A, Yonemura S, Tsukita S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junction. J Cell Biol 1994; 127: 1617-26.
  • 84 Bazzoni G, Martinez Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 2000; 275: 20520-6.
  • 85 Cordenonsi M, D’Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D, Citi S. Cingulin contains glomerular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol 1999; 147: 1569-82.
  • 86 Martinez-Estrada OM, Villa A, Breviario F, Orsenigo F, Dejana E, Bazzoni G. Association of junctional adhesion molecule with calcium/ calmodulin-dependent serine protein kinase (CASK/LIN-2) in human epithelial Caco-2 cells. J Biol Chem 2001; 276: 9291-6.
  • 87 Ebnet K, Schulz CU, Meyer zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000; 275: 27979-88.
  • 88 Zhadanov AB, Provance Jr DW, Speer CA, Coffin JD, Goss D, Blixt JA, Reichert CM, Mercer JA. Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr Biol 1999; 9: 880-8.
  • 89 Ozaki H, Ishii K, Arai H, Horiuchi H, Kawamoto T, Suzuki H, Kita T. Junctional adhesion molecule (JAM) is phosphorylated by protein kinase C upon platelet activation. Biochem Biophys Res Commun 2000; 276: 873-8.