Thromb Haemost 2001; 86(01): 198-213
DOI: 10.1055/s-0037-1616218
Research Article
Schattauer GmbH

Cytoskeletal Proteins and Platelet Signaling

Joan E. B. Fox
1   Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, The Lerner Research Institute, Cleveland Clinic Foundation, Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

The actin filament network fills the cytoplasm of unstimulated platelets and connects with a submembranous latticework of short cross-linked actin filaments, known as the membrane skeleton. One function of the cytoskeleton is to direct the contours of the membrane in the unstimulated platelet and the rapid changes in shape in the activated platelet. Activation-induced changes result from events such as phosphorylation or calpain-induced cleavage of cytoskeletal proteins. The specific reorganizations depend upon the combination of signals to which platelets are exposed. A second function of the cytoskeleton is to bind other cellular components; it binds signaling molecules, localizing them to specific cellular locations; it binds the plasma membrane regulating properties of the membrane, maintaining microdomains in the membrane, or regulating activities of membrane proteins. In this way, the cytoskeleton plays a critical role in regulation of spatial organizations and, thus, in the integration of cellular activities.

 
  • References

  • 1 Escolar G, Sauk J, Bravo ML, Krumwiede M, White JG. Immunogold staining of microtubules in resting and activated platelets. Am J Hematol 1987; 24: 177-88.
  • 2 Nachmias VT. Platelet and megakaryocyte shape change: triggered alterations in the cytoskeleton. Semin Hematol 1983; 20: 261-81.
  • 3 Danowski BA. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 1989; 93: 255-66.
  • 4 Enomoto T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: Possible involvement of the Rho signal cascade. Cell Structure and Function 1996; 21: 317-26.
  • 5 Cook TA, Nagasaki T, Gundersen GG. Rho Guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol 1998; 141: 175-85.
  • 6 Huby RD, Carlile GW, Ley SC. Interactions between the protein-tyrosine kinase ZAP-70, the proto-oncoprotein vav, and tubulin in jurkat T cells. J Biol Chem 1995; 270: 30241-4.
  • 7 Kaverina I, Rottner K, Small JV. Targeting, capture, and stabilization of microtubules at early focal adhesions. J Cell Biol 1998; 142: 181-90.
  • 8 Pletjushkina OJ, Belkin AM, Ivanova OJ, Ivanova OJ, Oliver T, Vasiliev JM. et al. Maturation of cell-substratum focal adhesions induced by depolymerizaition of microtubules is mediated by increased cortical tension. Cell Adhes Commun 1998; 2: 121-35.
  • 9 Fox JEB, Boyles JK, Berndt MC, Steffen PK, Anderson LK. Identification of a membrane skeleton in platelets. J Cell Biol 1988; 106: 1525-38.
  • 10 Fox JEB. Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of one of the glycoproteins as glycoprotein Ib. J Clin Invest 1985; 76: 1673-83.
  • 11 Fox JEB, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60 c-src , pp6 2-yes , and the p21 ras activating protein with the membrane skeleton. J Biol Chem 1993; 268: 25973-84.
  • 12 Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991; 112: 407-25.
  • 13 Earnest JP, Santos GF, Zuerbig S, Fox JEB. Dystrophin-related protein in the platelet membrane skeleton. Integrin-induced change in detergent-insolubility and cleavage by aggregating platelets. J Biol Chem 1995; 270: 27259-65.
  • 14 Fox JEB. Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes. J Biol Chem 1985; 260: 11970-7.
  • 15 Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP, Kwiatkowski DJ. et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 1990; 111: 1089-105.
  • 16 Takafuta T, Wu G, Murphy GF, Shapiro SS. Human β-filamin is a new protein that interacts with the cytoplasmic tail of glycoprotein Ibα. J Biol Chem 1998; 273: 17531-8.
  • 17 Xu W, Xie Z, Chung DW, Davie EW. A novel human actin-binding protein homologue that binds to platelet glycoprotein Ib. Blood 1998; 92: 1268-76.
  • 18 Fox JEB, Goll DE, Reynolds CC, Phillips DR. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation. J Biol Chem 1985; 260: 1060-6.
  • 19 Andrews RK, Fox JEB. Interaction of purified actin-binding protein with the platelet membrane glycoprotein Ib-IX complex. J Biol Chem 1991; 266: 7144-7.
  • 20 Andrews RK, Fox JEB. Identification of a region in the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX complex that binds to purified actin-binding protein. J Biol Chem 1992; 267: 18605-11.
  • 21 Meyer SC, Zuerbig S, Cunningham CC, Hartwig JH, Bissell T, Gardner K. et al. Identification of the region in actin-binding protein that binds to the cytoplasmic domain of glycoprotein Ib. J Biol Chem 1997; 272: 2914-9.
  • 22 Ott I, Fischer EG, Miyagi Y, Mueller BM, Ruf W. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J Cell Biol 1998; 140: 1241-53.
  • 23 Ohta Y, Stossel TP, Hartwig JH. Ligand-sensitive binding of actin-binding protein to immunoglobulin G Fc receptor I (FcgRI). Cell 1991; 67: 275-82.
  • 24 Bennett V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem 1985; 54: 273-304.
  • 25 Winkelmann JC, Forget BG. Erythroid and nonerythroid spectrins. Blood 1993; 81: 3173-85.
  • 26 Moon RT, McMahon AP. Generation of diversity in nonerythroid spectrins: Multiple polypeptides are predicted by sequence analysis of cDNAs encompassing the coding region of human nonerythroid α-spectrin. J Biol Chem 1990; 265: 4427-33.
  • 27 Fox JEB, Reynolds CC, Morrow JS, Phillips DR. Spectrin is associated with membrane-bound actin filaments in platelets and is hydrolyzed by the Ca2+-dependent protease during platelet activation. Blood 1987; 69: 537-45.
  • 28 Bennett V. Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Nature 1979; 281: 597-9.
  • 29 Davies GE, Cohen CM. Platelets contain proteins immunologically related to red cell spectrin and protein 4.1. Blood 1985; 65: 52-9.
  • 30 Fox JEB, Shattil SJ, Kinlough-Rathbone RL, Richardson M, Packham MA, Sanan DA. The platelet cytoskeleton stabilizes the interaction between αIIbβ3 and its ligand and induces selective movements of ligand-occupied integrin. J Biol Chem 1996; 271: 7004-11.
  • 31 Harris AS, Croall D, Morrow JS. Calmodulin regulates fodrin susceptibility to cleavage by calcium-dependent protease I. J Biol Chem 1989; 263: 17401-8.
  • 32 Harris AS, Morrow JS. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc Natl Acad Sci USA 1990; 87: 3009-13.
  • 33 Winder SJ, Gibson TJ, Kendrick-Jones J. Dystrophin and utrophin: The missing links!. FEBS Letters 1995; 369: 27-33.
  • 34 Lumeng CN, Phelps SF, Rafael JA, Cox GA, Hutchinson TL, Begy CR. et al. Characterization of dystrophin and utrophin diversity in the mouse. Hum Mol Genet 1999; 8: 593-9.
  • 35 Yang B, Jung D, Rafael JA, Chamberlain JS, Campbell KP. Identification of α-syntrophin binding to syntrophin triplet, dystrophin, and utrophin. J Biol Chem 1995; 270: 4975-8.
  • 36 Ahn AH, Freener CA, Gussoni E, Yoshida M, Ozawa E, Kunkel LM. The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives. J Biol Chem 1996; 271: 2724-30.
  • 37 Peters MFAME, Froehner SC. Differential association of syntrophin pairs with the dystrophin complex. J Cell Biol 1997; 81-93.
  • 38 Hasegawa M, Cuenda A, Spillantini MG, Thomas GM, Buee-Scherrer V, Cohen P. et al. Stress-activated protein kinase-3 interacts with the PDZ domain of α1-syntrophin. A mechanism for specific substrate recognition. J Biol Chem 1999; 274: 12626-31.
  • 39 Collier NC, Wang K. Human platelet P235: a high Mr protein which restricts the length of actin filaments. FEBS Lett 1982; 143: 205-10.
  • 40 Rees D, Ades S, Singer S, Hynes R. Sequence and domain structure of talin. Nature 1990; 347: 685-9.
  • 41 Kimura Y, Koga H, Araki N, Mugita N, Fujita N, Takeshima H. et al. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nature Med 1998; 4: 1-8.
  • 42 Arpin M, Algrain M, Louvard D. Membrane-actin microfilament connections: An increasing diversity of players related to band 4.1. Curr Opin Cell Biol 1994; 6: 136-41.
  • 43 Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K. Interaction of plasma membrane fibronectin receptor with talin – a transmembrane linkage. Nature 1986; 320: 531-3.
  • 44 Knezevic I, Leisner TM, Lam SC-T. Direct binding of the platelet integrin αIIbβ3 (GPIIb-IIIa) to talin: Evidence that interaction is mediated through the cytoplasmic domains of both αIIb and β3. J Biol Chem 1996; 271: 16416-21.
  • 45 Calderwood D, Zent R, Grant R, Rees D, Hynes R, Ginsberg M. The talin head domain binds to integrin β cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274: 28071-4.
  • 46 Patil S, Jedsadayanmata A, Wencel-Drake JD, Wang W, Knezevic I, Lam SC-T. Identification of a talin-binding site in the integrin β-subunit distinct from the NPLY regulatory motif of post-ligand binding functions. The talin N-terminal head domain interacts with the membrane-proximal region of the β3 cytoplasmic tail. J Biol Chem 1999; 274: 28575-83.
  • 47 Muguruma M, Matsumura S, Fukazawa T. Direct interactions between talin and actin. Biochem Biophys Res Commun 1990; 171: 1217-23.
  • 48 Nuckolls GH, Turner CE, Burridge K. Functional studies of the domains of talin. J Cell Biol 1990; 110: 1635-44.
  • 49 Gilmore A, Wood C, Ohanian V, Jackson P, Patel B, Rees D. et al. The cytoskeletal protein talin contains at least two distinct vinculin binding domains. J Cell Biol 1993; 122: 337-47.
  • 50 Burridge K, Mangeat P. An interaction between vinculin and talin. Nature 1984; 308: 744-6.
  • 51 Gilmore AP, Burridge K. Regulation of vinculin binding to talin and actin by phospatidylinositol-4-5-bisphosphate. Nature 1996; 381: 531-5.
  • 52 Bertagnolli ME, Locke SJ, Hensler ME, Bray PF, Beckerle MC. Talin distribution and phosphorylation in thrombin-activated platelets. J Cell Sci 1993; 106: 1189-99.
  • 53 Simons PCaE L. The 47-kD Fragment of talin is a substrate for protein kinase P. Blood 1993; 82: 3343-9.
  • 54 Tsukita S, Yonemura S, Tsukita S. ERM (ezrin/radixin/moesin) family; from cytoskeleton to signal transduction. Curr Opin Cell Biol 1997; 9: 70-5.
  • 55 Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 1998; 140: 885-95.
  • 56 Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plamsa membrane association: Possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 1996; 135: 37-51.
  • 57 Bretscher A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol 1989; 108: 921-30.
  • 58 Nakamura F, Amieva MR, Furthmayr H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J Biol Chem 1995; 270: 31377-85.
  • 59 Shuster CB, Herman IM. Indirect association of ezrin with F-actin: Isoform specificity and calcium sensitivity. J Cell Biol 1995; 128: 837-48.
  • 60 Price MG. Skelemins: Cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle. J Cell Biol 1987; 104: 1325-36.
  • 61 Price MG, Gomer RH. Skelemin, a cytoskeletal M-disc periphery protein, contains motifs of adhesion/recognition and intermediate filament proteins. J Biol Chem 1993; 268: 21800-10.
  • 62 Reddy KB, Gascard P, Price MG, Negrescu E, Fox JEB. Identification of an interaction between the M-band Protein skelemin and beta integrin subunits. J Biol Chem 1998; 273: 35039-47.
  • 63 Kazmierski ST, Higginbotham JM, Kim KT, Keller III TCS. Human platelet titin: Identification, phosphorylation, and interaction with myosin II. Mol Biol Cell 1996; 7: 201a (abstr.).
  • 64 Titus MA. Unconventional myosins: new frontiers in actin-based motors. Trends in Cell Biol 1997; 7: 119-23.
  • 65 Stull JT. Myosin minireview series. J Biol Chem 1996; 271: 15849-53.
  • 66 Hasson T, Mooseke MS. Vertebrate unconventional myosins. J Biol Chem 1996; 271: 16431-4.
  • 67 Jennings LK, Fox JEB, Edwards HH, Phillips DR. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem 1981; 256: 6927-32.
  • 68 Ishikawa H, Bischoff R, Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol 1969; 43: 312-28.
  • 69 Pollard TD, Cooper JA. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 1986; 55: 987-1035.
  • 70 Lind SE, Yin HL, Stossel TP. Human platelets contain gelsolin. A regulator of actin filament length. J Clin Invest 1982; 69: 1384-7.
  • 71 Hartmann H, Noegel AA, Eckerskorn C, Rapp S, Schleicher M. Ca2+-independent F-actin capping proteins. J Biol Chem 1989; 264: 12639-47.
  • 72 Marcu MG, Zhang L, Nau-Staudt K, Trifaro J-M. Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by two scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bisphosphate. Blood 1996; 87: 20-4.
  • 73 Rodriguez del Castillo A, Vitale ML, Tchakarov L, Trifaro JM. Human platelets contain scinderin, a Ca2+-dependent actin filament-severing protein. Thromb Haemost 1992; 67: 248-51.
  • 74 Lo SH, Weisberg E, Chen LB. Tensin: A potential link between the cytoskeleton and signal transduction. Bioessays 1994; 16: 817-23.
  • 75 Kuhlamn PA, Hughes CA, Bennett V, Fowler VM. A new function for adducin: Calcium/calmodulin-regulated capping of the barbed ends of actin filaments. J Biol Chem 1996; 271: 7986-91.
  • 76 Safer D, Nachmias VT. Beta thymosins as actin binding peptides. BioEssays 1994; 16: 473-9.
  • 77 Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A. et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 1995; 82: 643-53.
  • 78 Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 1990; 247: 1575-8.
  • 79 Lassing I, Lindberg U. Specific interaction between phosphatidylinositol 4,5-biphosphate and profilactin. Nature 1985; 314: 472-4.
  • 80 Hartwig JH, Chambers KA, Hopcia KL, Kwiatkowski DJ. Association of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation. J Cell Biol 1989; 109: 1571-9.
  • 81 Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard TD. The control of actin nucleotide exchange by thymosin β4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 1992; 31015-24.
  • 82 Machesky LM, Gould KL. The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 1999; 11: 117-21.
  • 83 Zigmond SH. Actin cytoskeleton: The Arp2/3 complex gets to the point. Curr Biol 1998; 8: R654-7.
  • 84 Remold-O’Donnell E, Rosen FS, Kenney DM. Defects in Wiskott-Aldrich Syndrome blood cells. Blood 1996; 87: 2621-31.
  • 85 Miki H, Miura K, Takenawa T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 1996; 15: 5326-35.
  • 86 Symons M, Derry JMJ, Kariak B, Jiang S, Lemahieu V, McCormick F. et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 1996; 84: 723-34.
  • 87 Symons M. Rho family GTPases: The cytoskeleton and beyond. Trends Biochem Sci 1996; 21: 178-81.
  • 88 Haffner C, Jarchau T, Reinhard M, Hoppe J, Lohmann SM, Walter U. Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP. EMBO J 1995; 14: 19-27.
  • 89 Prehoda KE, Lee DJ. Lim WA Structure of the enabled/VASP homology 1 domain-peptide complex: A key component in the spatial control of actin assembly. Cell 1999; 97: 471-80.
  • 90 Reinhard M, Jouvenal K, Tripier D, Walter U. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein). Proc Natl Acad Sci USA 1995; 92: 7956-60.
  • 91 Reinhard M, Rudiger M, Jockusch BM, Walter U. VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Lett 1996; 399: 103-7.
  • 92 Brindle NPJ, Holt MR, Davies JE, Price CJ, Critchley DR. The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochem J 1996; 318: 753-7.
  • 93 Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 1995; 14: 1583-9.
  • 94 Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J. et al. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 1994; 269: 14509-17.
  • 95 Horstrup K, Jablonka B, Honig-Liedl P, Just M, Kochsiek K, Walter U. Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 1994; 225: 21-27.
  • 96 Aszodi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L. et al. The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J 1999; 18: 37-48.
  • 97 Fox JEB, Austin CD, Reynolds CC, Steffen PK. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem 1991; 266: 13289-95.
  • 98 Escolar G, Krumwiede M, White JG. Organization of the actin cytoskeleton of resting and activated platelets in suspension. Am J Pathol 1986; 123: 86-94.
  • 99 Nachmias VT. Cytoskeleton of human platelets at rest and after spreading. J Cell Biol 1980; 86: 795-802.
  • 100 Debus E, Weber K, Osborn M. The cytoskeleton of blood platelets viewed by immunofluorescence microscopy. Eur J Cell Biol 1981; 24: 45-52.
  • 101 Casella JF, Flanagan MD, Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 1981; 293: 302-5.
  • 102 Fox JEB, Phillips DR. Inhibition of actin polymerization in blood platelets by cytochalasins. Nature 1981; 292: 650-2.
  • 103 Markey F, Persson T, Lindberg U. Characterization of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor. Cell 1981; 23: 145-53.
  • 104 Fox JEB, Phillips DR. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem 1982; 257: 4120-6.
  • 105 Daniel JL, Molish IR, Holmsen H. Myosin phosphorylation in intact platelets. J Biol Chem 1981; 256: 7510-4.
  • 106 Fox JEB, Reynolds CC, Phillips DR. Calcium-dependent proteolysis occurs during platelet aggregation. J Biol Chem 1983; 258: 9973-81.
  • 107 Fox JEB, Taylor RG, Taffarel M, Boyles JK, Goll DE. Evidence that activation of platelet calpain is induced as a consequence of binding of adhesive ligand to the integrin, glycoprotein IIb-IIIa. J Cell Biol 1993; 120: 1501-7.
  • 108 Fox JEB. The platelet cytoskeleton. Thromb Haemost 1993; 70: 884-93.
  • 109 Kouns WC, Fox CF, Lamoreaux WJ, Coons LB, Jennings LK. The effect of glycoprotein IIb-IIIa receptor occupancy on the cytoskeleton of resting and activated platelets. J Biol Chem 1991; 266: 13891-900.
  • 110 Zaffran Y, Meyer SC, Negrescu E, Reddy KB, Fox JEB. Signaling across the platelet adhesion receptor GPIb-IX induces IIb 3 activation both in platelets and a transfected CHO cell system. J Biol Chem 2000; 275: 16779-87.
  • 111 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-66.
  • 112 Hartwig JH, Kung S, Kovacsovics T, Janmey PA, Cantley LC, Stossel TP. et al. D3 phosphoinositides and outside-in integrin signaling by glycoprotein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by phorbol 12-myristate 13-acetate. J Biol Chem 1996; 271: 32986-93.
  • 113 Leng L, Kashiwagi H, Ren X, Shattil S. RhoA and the function of platelet integrin alphaIIbbeta3. Blood 1998; 91: 4206-15.
  • 114 Golden A, Nemeth SP, Brugge JS. Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity. Proc Natl Acad Sci USA 1986; 83: 852-6.
  • 115 Horak ID, Corcoran ML, Thompson PA, Wahl LM, Bolen JB. Expression of p60fyn in human platelets. Oncogene 1990; 5: 597-602.
  • 116 Huang M-M, Bolen JB, Barnwell JW, Shattil SH, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn and Yes protein tyrosine kinases in human platelets. Proc Natl Acad Sci USA 1991; 88: 7844-8.
  • 117 Ohta S, Taniguchi T, Asahi M, Kato Y, Nakagawara G, Yamamura H. Protein-tyrosine kinase p72syk is activated by wheat germ agglutinin in platelets. Biochem Biophys Res Commun 1992; 185: 1128-32.
  • 118 Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol 1992; 119: 905-12.
  • 119 Clark EA, Brugge JS. Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol Cell Biol 1993; 13: 1863-71.
  • 120 Clark EA, Shattil SJ, Ginsberg MH, Bolen J, Brugge JS. Regulation of the protein tyrosine kinase p72syk by platelet agonists and the integrin IIb 3. J Biol Chem 1994; 269: 28859-64.
  • 121 Wu H, Parsons JT. Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 1993; 120: 1417-26.
  • 122 Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT. Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 1991; 11: 5113-24.
  • 123 Cichowski K, McCormick F, Brugge JS. p21rasGAP association with Fyn, Lyn, and Yes in thrombin-activated platelets. J Biol Chem 1992; 267: 5025-8.
  • 124 Cichowski K, Brugge JS, Brass LF. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the protooncogene product, p95vav, in platelets. J Biol Chem 1996; 271: 7544-50.
  • 125 Haimovich B, Lipfert L, Brugge JS, Shattil SJ. Tyrosine phosphorylation and cytoskeletal reorganization in platelets are triggered by interaction of integrin receptors with their immobilized ligands. J Biol Chem 1993; 268: 15868-77.
  • 126 Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. IIb 3-(GP IIb-IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem 1996; 271: 10811-5.
  • 127 Papkoff J, Chen R-H, Blenis J, Forsman J. p42 mitogen-activated protein kinase and p90 ribosomal S6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol 1994; 14: 463-72.
  • 128 Nakashima S, Yuji C, Nakamura M, Miyoshi N, Kohno M, Nozawa Y. Tyrosine phosphorylation and activation of mitogen-activated protein kinases by thrombin in human platelets: Possible involvement in late arachidonic acid release. Biochem Biophys Res Comm 1994; 198: 497-503.
  • 129 Teo M, Manser E, Lim L. Identification and molecular cloning of a p21cdc42/rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets. J Biol Chem 1995; 270: 26690-7.
  • 130 Adelstein RS, Conti MA. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature 1975; 256: 597-8.
  • 131 Daniel JL, Holmsen H, Adelstein RS. Thrombin-stimulated myosin phosphorylation in intact platelets and its possible involvement in secretion. Thromb Haemost 1977; 38: 984-9.
  • 132 Beckerle MC, Miller DE, Bertagnolli ME, Locke SJ. Activation-dependent redistribution of the adhesion plaque protein, talin, in intact human platelets. J Cell Biol 1989; 109: 3333-46.
  • 133 Zhu Y, O’Neill S, Saklatvala J, Tassi L, Mendelsohn ME. Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood 1994; 84: 3715-23.
  • 134 Carroll RC, Gerrard JM. Phosphorylation of platelet actin-binding protein during platelet activation. Blood 1982; 59: 466-71.
  • 135 Zhang J, Fry MJ, Waterfield MD, Jaken S, Liao L, Fox JEB. et al. Activated phosphoinositide 3-kinase associates with membrane skeleton in thrombin-exposed platelets. J Biol Chem 1992; 267: 4686-92.
  • 136 Zhang J, Zhang J, Shattil SJ, Cunningham MC, Rittenhouse SE. Phosphoinositide 3-kinase g and p85/phosphoinositide 3-kinase in platelets. J Biol Chem 1996; 271: 6265-72.
  • 137 Zhang J, King WG, Dillon S, Hall A, Feig L, Rittenhouse SE. Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho. J Biol Chem 1993; 268: 22251-4.
  • 138 Zhang J, Zhang J, Benovic JL, Sugai M, Wetzker R, Gout I. et al. Sequestration of a G-proteinsubunit or ADP-ribosylation of Rho can inhibit thrombin-induced activation of platelet phosphoinositide 3-kinases. J Biol Chem 1995; 270: 6589-94.
  • 139 Banfic H, Downes P, Rittenhouse S. E. Biphasic activation of PKBalpha/Akt in platelets. J Biol Chem 1998; 273: 11630-7.
  • 140 Rittenhouse SE. Phosphoinositide 3-kinase activation and platelet function. Blood 1996; 88: 4401-14.
  • 141 Ma AD, Metjian A, Bagrodia S, Taylor S, Abrams CS. Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase g, a Rac guanosine exchange factor, and Rac. Mol Cell Biol 1998; 18: 4744-51.
  • 142 Crespo P, Schuebel K, Ostrom A, Gutkind J, Bustelo X. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav protooncogene product. Nature 1997; 385: 169-72.
  • 143 Schuebel KE, Movilla N, Rosa JL, Bustelo XR. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 1998; 17: 6608-21.
  • 144 Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 1994; 10: 31-54.
  • 145 Bollag G, McCormick F. Regulators and effectors of ras proteins. Annu Rev Cell Biol 1991; 7: 601-32.
  • 146 Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992; 70: 431-42.
  • 147 Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G. et al. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 1992; 70: 93-104.
  • 148 Bustelo XR, Ledbetter JA, Barbacid M. Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 1992; 356: 68-71.
  • 149 Kulkarni S, Saido T, Suzuki K, Fox J. Calpain mediates integrin-induced signaling at a point upstream of Rho family members. J Biol Chem 1999; 274: 21265-75.
  • 150 Zheng Y, Baghrodia S, Cerione RA. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J Biol Chem 1994; 269: 18727-30.
  • 151 Manser E, Chong C, Zhao Z-S, Leung T, Michael G, Hall C. et al. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem 1995; 270: 25070-8.
  • 152 Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D. et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78: 1027-37.
  • 153 Tolias KF, Cantley LC, Carpenter CL. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 1995; 270: 17656-9.
  • 154 Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 1994; 79: 507-13.
  • 155 Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 1996; 133: 1403-15.
  • 156 Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the ras-related rhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 1995; 270: 29051-4.
  • 157 Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T. et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rhokinase). J Biol Chem 1996; 271: 20246-9.
  • 158 Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996; 273: 245-8.
  • 159 Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y. et al. Formation of actin stress fibers and focal adhesions enhanced by Rhokinase. Science 1997; 275: 1308-11.
  • 160 Burridge K. Chrzanowska-Wodnicka Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996; 12: 463-519.
  • 161 Morii N, Teru-uchi T, Tominaga T, Kumagai N, Kozaki S, Ushikubi F. et al. A rho gene product in human blood platelets. II. Effects of the ADP-ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol Chem 1992; 267: 20921-6.
  • 162 Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller R. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by vav. Science 1998; 279: 558-60.
  • 163 Wallace RW, Tallant EA, McManus MC. Human platelet calmodulin-binding proteins: identification and Ca2+-dependent proteolysis upon platelet activation. Biochemistry 1987; 26: 2766-73.
  • 164 Daniel JL, Adelstein RS. Isolation and properties of platelet myosin light chain kinase. Biochemistry 1976; 15: 2370-7.
  • 165 Croce K, Flaumenhaft R, River M, Furie B, Furie BC, Herman IM. et al. Inhibition of calpain blocks platelet secretion, aggregation, and spreading. J Biol Chem 1999; 274: 36321-7.
  • 166 Croall DE, Demartino GN. Calcium-activated neutral protease (Calpain) system: Structure, function, and regulation. Physiol Rev 1991; 71: 813-47.
  • 167 Saido TC, Sorimachi H, Suzuki K. Calpain: New perspectives in molecular diversity and physiological-pathological involvement. FASEB J 1994; 8: 814-22.
  • 168 Mellgren RL. Calcium-dependent proteases: An enzyme system active at cellular membranes?. FASEB 1987; 1: 110-5.
  • 169 Suzuki K, Imajoh S, Emori Y, Kawasaki H, Minami Y, Ohno S. Regulation of activity of calcium activated neutral protease. In: Weber G. editor. Advances in Enzyme Regulation. Oxford: Pergamon Press; 1988: 153-69.
  • 170 Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J 1997; 328: 721-32.
  • 171 Phillips DR, Jakabova M. Ca2+-dependent protease in human platelets. Specific cleavage of platelet polypeptides in the presence of added Ca2+ . J Biol Chem 1977; 252: 5602-5.
  • 172 Yuan Y, Dopheide SM, Ivanidis C, Salem HH, Jackson SP. Calpain regulation of cytoskeletal signaling complexes in von Willebrand factor-stimulated platelets: Distinct roles for glycoprotein Ib-V-IX and glycoprotein IIb-IIIa (Integrin IIb 3) in von Willebrand factor-induced signal transduction. J Biol Chem 1997; 272: 21847-54.
  • 173 Fox JEB, Saido TC. Calpain in signal transduction. In: Wang KKW, Yuen P-W. editors. Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease. Washington, D. C.: Taylor and Francis; 1999: 103-26.
  • 174 Du X, Saido TC, Tsubuki S, Indig FE, Williams MJ, Ginsberg MH. Calpain cleavage of the cytoplasmic domain of the integrin β3 subunit. J Biol Chem 1995; 270: 26146-51.
  • 175 Tapley PM, Murray AW. Evidence that treatment of platelets with phorbol ester causes proteolytic activation of Ca2+-activated, phospholipid-dependent protein kinase. Eur J Biochem 1985; 151: 419-23.
  • 176 Oda A, Druker BJ, Ariyoshi H, Smith M, Salzman EW. pp60src is an endogenous substrate for calpain in human blood platelets. J Biol Chem 1993; 268: 12603-8.
  • 177 Cooray P, Yuan Y, Schoenwaelder SM, Mitchell CA, Salem HH, Jackson SP. Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochem J 1996; 318: 41-7.
  • 178 Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG. Calpain catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 1993; 12: 4843-56.
  • 179 Gu M, Majerus P. The properties of the protein tyrosine phosphatase PTPMEG. J Biol Chem 1996; 271: 27751-9.
  • 180 Banfic H, Tang X, Batty I, Downes C, Chen C, Rittenhouse S. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J Biol Chem 1998; 273: 13-6.
  • 181 Norris FA, Atkins RC, Majerus PW. Inositol polyphosphate 4-phosphatase is inactivated by calpain-mediated proteolysis in stimulated human platelets. J Biol Chem 1997; 272: 10987-9.
  • 182 Huang C, Tandon NN, Greco NJ, Ni Y, Wang T, Zhan X. Proteolysis of platelet cortactin by calpain. J Biol Chem 1997; 272: 19248-52.
  • 183 Bialkowska K, Kulkarni S, Du X, Goll DE, Saido TC, Fox JEB. Evidence that 3 integrin-induced Rac activation involves the calpain-dependent formation of integrin clusters that are distinct from the focal complexes and focal adhesions that form as Rac and RhoA become active. J Cell Biol 2000; 151: 685-96.
  • 184 Du X, Fox JEB, Pei S. Identification of a binding sequence for the 14-3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ib. J Biol Chem 1996; 271: 7362-7.
  • 185 Calverley DC, Kavanagh TJ, Roth GJ. Human signaling protein 14-4-3 zeta interacts with platelet glycoprotein Ib subunits Ib and Ib. Blood 1998; 91: 1295-303.
  • 186 Andrews RK, Harris SJ, McNally T, Berndt MC. Binding of purified 14-3-3 zeta signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex. Biochemistry 1998; 37: 638-47.
  • 187 Bork P, Sudol M. The WW domain: A signalling site in dystrophin?. TIBS 1994; 19: 531-3.
  • 188 Bialkowska K, Kulkarni S, Fox JEB. Involvement of spectrin SH3 domain and a previously unidentified SH3 domain-interacting protein in regulating integrin-induced cell signaling. Thromb Haemost 1999; 439a (abstr.).
  • 189 Yada Y, Okano Y, Nozawa Y. Enhancement of GTP gamma S-binding activity by cAMP-dependent phosphorylation of a filamin-like 250 kDa membrane protein in human platelets. Biochem Biophys Res Commun 1990; 172: 256-61.
  • 190 Ueda M, Oho C, Takisawa H, Ogihara S. Interaction of the low-molecular mass guanine-nucleotide-binding protein with the actin-binding protein and its modulation by the cAMP-dependent protein kinase in bovine platelets. Eur J Biochem 1992; 203: 347-52.
  • 191 Ohta Y, Suzuki N, Nakamura S, Hartwig J, Stossel T. The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 1999; 96: 2122-8.
  • 192 Marti A, Luo Z, Cunningham C, Ohta Y, Hartwig J, Stossel TP. et al. Actin-binding protein-280 binds the stress activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-α activation of SAPK in melanoma cells. J Biol Chem 1997; 272: 2620-8.
  • 193 Beck KA, Nelson WJ. The spectrin-based membrane skeleton as a membrane protein-sorting machine. Am J Physiol 1996; 39: C1263-70.
  • 194 DeMatteis MA.M.J.S. The role of ankyrin and spectrin in membrane transport and domain function. Curr Opin Cell Biol 1998; 10: 542-9.
  • 195 Campanelli JT, Roberds SL, Campbell KP, Scheller RH. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 1994; 77: 663-74.
  • 196 Schultz J, Hoffmuller U, Krause G, Ashurst J, Macias MJ, Schmieder P. et al. Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Nat Struct Biol 1998; 5: 19-24.
  • 197 Gee SH, Madhaven R, Levinson SR, Caldwell JH, Sealock R, Froehner SC. Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J Neurosci 1998; 18: 128-37.
  • 198 Lansman JB, Franco A. What does dystrophin do in normal muscle?. J Mus Res Cell Motil 1991; 12: 409-11.
  • 199 Franco A, Lansman JB. Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 1990; 344: 670-3.
  • 200 Franco A, Lansman JB. Stretch-sensitive channels in developing muscle cells from a mouse cell line. J Physiol 1990; 427: 361-80.
  • 201 Chant J, Stowers L. GTPase cascades choreographing cellular behavior: Movement, morphogenesis, and more. Cell 1995; 81: 1-4.
  • 202 Drubin DG, Nelson WJ. Origins of cell polarity. Cell 1996; 84: 335-44.
  • 203 Cunningham CC, Gorlin JB, Kwiatkowki DJ, Hartwig JH, Janmey PA, Byers HR. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 1992; 255: 325-7.
  • 204 Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 1998; 21: 1315-25.
  • 205 George JN, Nurden AT. Inherited disorders of the platelet membrane: Glanzmann‘s thrombasthenia and Bernard-Soulier syndrome. In: Colman RW, Hirsh J, Marder VJ, Salzman EW. eds. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. 2nd ed. Philadelphia: J. B. Lippincott Company; 1987: 726-40.
  • 206 Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci USA 2000; 97: 2803-8.
  • 207 Cranmer SL, Ulsemer P, Cooke BM, Salem HH, de la Salle C, Lanza F. et al. Glycoprotein (GP) Ib-IX-transfected cells roll on a von Willebrand factor matrix under flow: Importance of the GPIb/actin-binding protein (ABP-280) interaction in maintaining adhesion under high-shear. J Biol Chem 1999; 274: 6097-106.
  • 208 Meyer SC, Sanan DA, Fox JEB. Role of actin-binding protein in insertion of adhesion receptors into the membrane. J Biol Chem 1998; 273: 3013-20.