Thromb Haemost 2001; 86(02): 686-693
DOI: 10.1055/s-0037-1616105
Review Article
Schattauer GmbH

Release of Soluble Urokinase Receptor from Vascular Cells*

Triantafyllos Chavakis
1   Biochemisches Institut, Fachbereich Humanmedizin
2   III. Medizinische Klinik und Poliklinik Justus-Liebig-Universität, Giessen
,
Antje K. Willuweit
3   Max-Planck-Institut für Physiologische und Klinische Forschung, Bad Nauheim, Germany
,
Florea Lupu
4   Weston Center for Experimental Research, Thrombosis Research Institute, London, UK
,
Klaus T. Preissner
1   Biochemisches Institut, Fachbereich Humanmedizin
,
Sandip M. Kanse
1   Biochemisches Institut, Fachbereich Humanmedizin
› Author Affiliations
Further Information

Publication History

Received 28 September 2000

Accepted after resubmission 20 February 2001

Publication Date:
12 December 2017 (online)

Summary

Urokinase-type plasminogen activator (uPA) and its cell surface-receptor (uPAR) regulate cellular functions linked to adhesion and migration and contribute to pericellular proteolysis in tissue remodelling processes. Soluble uPAR (suPAR) is present in the circulation, peritoneal and ascitic fluid and in the cystic fluid from ovarian cancer. We have investigated the origin and the vascular distribution of the soluble receptor, which accounts for 10-20% of the total receptor in vascular endothelial and smooth muscle cells. Phase separation analysis of the cell conditioned media with Triton X-114 indicated that suPAR associates with the aqueous phase, indicative of the absence of the glycolipid anchor. There was a polarized release of suPAR from cultured endothelial cells towards the basolateral direction, whereas the membrane-bound receptor was found preferentially on the apical surface. Both, uPAR and suPAR became upregulated 2-4 fold after activation of protein kinase C with phorbol ester, which required de-novo protein biosynthesis. Interleukin-1β (IL-1β), basic fibroblast growth factor (bFGF) or vascular endothelial growth factor increased suPAR release from endothelial cells, whereas platelet derived growth factor-BB, bFGF or IL-1β stimulated suPAR release from vascular smooth muscle cells. Immune electron microscopy indicated that in atherosclerotic vessels (s)uPAR was observed on cell membranes as well as in the extracellular matrix. These findings indicate that (s)uPAR from vascular cells is upregulated by proangiogenic as well as proatherogenic growth factors and cytokines, is preferentially released towards the basolateral side of endothelial cells and accumulates in the vessel wall.

*Part of this work was supported by grants (Pr 327/1-4) from the Deutsche Forschungsgemeinschaft (Bonn, Germany) and the Novartis-Foundation (Nürnberg, Germany). This work is part of the MD/PhD-thesis of T.C. at the Institute for Biochemistry, Department of Medicine, Justus-Liebig-Universität, Giessen, Germany.

Abbreviations: bFGF: basic fibroblast growth factor, GPI: glycosyl-phosphatidylinositol, FCS: fetal calf serum, HUVEC: human umbilical vein endothelial cells, HVSMC: human vascular smooth muscle cells, IL-1β: interleukin-1β, mAb: monoclonal antibody, PBS: phosphate-buffered saline, PDGF-BB: platelet derived growth factor-BB, piPLC: phosphatidylinositol-specific phospholipase C, piPLD: phosphatidylinositol-specific phospholipase D, PMA: phorbol myristate acetate, scuPA: single chain uPA, suPAR: soluble urokinase receptor, uPA: urokinase- type plasminogen activator, uPAR: urokinase receptor, VN: vitronectin

 
  • References

  • 1 Carmeliet P, Collen D. Role of the plasminogen/plasmin system in thrombosis, hemostasis, restenosis and atherosclerosis. Trends Cardiovasc Med 1995; 5: 117-22.
  • 2 Blasi F. uPA, uPAR, PAI1: key intersection of proteolytic, adhesive and chemotactic highways?. Immunol Today 1997; 18: 415-7.
  • 3 Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis. Int J Cancer 1997; 72: 1-22.
  • 4 Chapman HA. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 1997; 9: 714-24.
  • 5 Behrendt N, Ronne E, Dano K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyl 1995; 376: 269-79.
  • 6 Ellis V. Functional analysis of the cellular receptor for urokinase in plasminogen activation. J Biol Chem 1996; 271: 14779-84.
  • 7 Ossowski L, Clunie G, Masucci M, Blasi F. In vivo paracrine interaction between urokinase and its receptor: effect on tumor cell invasion. J Cell Biol 1993; 115: 1107-12.
  • 8 Gyetko MR, Todd III RF, Wilkinson CC, Sitrin RG. The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest 1994; 93: 1380-7.
  • 9 Resnati M, Guttinger M, Valcamonica S, Sidenius N, Blasi F, Fazioli F. Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J 1996; 15: 1572-82.
  • 10 Waltz DA, Sailor LZ, Chapman HA. Cytokines induce urokinase-dependent adhesion of human myeloid cells. A regulatory role for plasminogen activator inhibitor. J Clin Invest 1993; 91: 1541-52.
  • 11 Sitrin RG, Todd RF, Petty HR, Brock TG, Shollenberger SB, Albrecht E, Gyetko MR. The urokinase receptor (CD87) facilitates CD11B/CD18-mediated adhesion of human monocytes. J Clin Invest 1996; 97: 1942-51.
  • 12 Sitrin RG, Shollenberger SB, Strieter RM, Gyetko MR. Endogenously produced urokinase amplifies tumor necrosis factor-α secretion by THP-1 mononuclear phagocytes. J Leukoc Biol 1996; 59: 302-11.
  • 13 Bohuslav J, Horejsi V, Hansmann C, Stöckl J, Weidle UH, Majdic O, Bart-ke I, Knapp W, Stockinger H. Urokinase plasminogen activator receptor, β2-integrins, and src-kinases within a single receptor complex of human monocytes. J Exp Med 1995; 181: 1381-90.
  • 14 Behrendt N, Jensen ON, Engelholm LH, Mortz E, Mann M, Dano K. A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 2000; 275: 1993-2002.
  • 15 Simon DI, Rao NK, Xu H, Wei Y, Majdic O, Ronne O, Kobzik L, Chapman HA. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood 1996; 88: 3185-94.
  • 16 Wei Y, Lukashev M, Simon DI, Bodary SC, Rosenberg S, Doyle MV, Chapman HA. Regulation of integrin function by the urokinase receptor. Science 1996; 273: 1551-5.
  • 17 May AE, Kanse SM, Lund LR, Gisler RH, Imhof BA, Preissner KT. Urokinase receptor (CD87) regulates leukocyte recruitment via β2-integrins in vivo. J Exp Med 1998; 188: 1029-37.
  • 18 Chavakis T, May AE, Preissner KT, Kanse SM. Molecular mechanisms of zinc-dependent leukocyte adhesion involving the urokinase receptor and β2-Integrins. Blood 1999; 93: 2976-83.
  • 19 Reuning U, Bang NU. Regulation of the urokinasetype plasminogen activator receptor on vascular smooth muscle cells is under the control of thrombin and other mitogens. Arterioscler Thromb 1992; 12: 1161-70.
  • 20 Reuning U, Little SP, Dixon EP, Bang NU. Effect of thrombin, the thrombin receptor activation peptide, and other mitogens on vascular smooth-muscle cell urokinase receptor messenger-RNA levels. Blood 1994; 84: 3700-8.
  • 21 Pepper MS, Sappino AP, Stocklin R, Orci L, Vassalli JD. Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol 1993; 122: 673-84.
  • 22 Koolwijk P, van Erck MGM, de Vree WJA, Vermeer MA, Weich HA, Hanemaaijer R, van Hinsbergh VWM. Cooperative effect of TNFα, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 1996; 132: 1177-88.
  • 23 Duffy MJ. Urokinase-type plasminogen activator and malignancy. Fibrinolysis 1993; 7: 295-302.
  • 24 Sier CFM, Stephens R, Bizik J, Mariani A, Bassan M, Pedersen N, Frigerio L, Ferrari A, Dano K, Brunner N, Blasi F. The level of urokinase-type plasminogen activator receptor is increased in serum of ovarian cancer patients. Cancer Res 1998; 58: 1843-9.
  • 25 Ninomiya H, Hasegawa Y, Nagasawa T, Abe T. Excess soluble urokinase-type plasminogen activator receptor in the plasma of patients with paroxysmal nocturnal hemoglobinuria inhibits cell-associated fibrinolytic activity. Int J Haematol 1997; 65: 285-91.
  • 26 Mizukami IF, Faulkner NE, Gyetko MR, Sitrin RG, Todd RF. Enzyme-linked immunoabsorbent assay detection of a soluble form of urokinase plasminogen activator receptor in vivo. Blood 1995; 86: 203-11.
  • 27 Pedersen N, Schmitt M, Ronne E, Nicoletti MI, Hoyer-Hansen G, Conese M, Giavazzi R, Dano K, Kuhn W, Jänicke F, Blasi F. A ligand-free, soluble urokinase receptor is present in the ascitic fluid from patients with ovarian cancer. J Clin Invest 1993; 92: 2160-7.
  • 28 Wahlberg K, Hoyer-Hansen G, Casslen B. Soluble receptor for urokinase plasminogen activator in both full-length and a cleaved form is present in high concentration in cystic fluid from ovarian cancer. Cancer Res 1998; 58: 3294-8.
  • 29 Lau HKF, Kim M. Soluble urokinase receptor from fibrosarcoma HT-1080 cells. Blood Coagul Fibrinol 1994; 5: 473-8.
  • 30 Ragno P, Montuori N, Covelli B, Hoyer-Hansen G, Rossi G. Differential expression of a truncated form of the urokinase-type plasminogen-activator receptor in normal and tumor thyroid cells. Cancer Res 1998; 58: 1315-9.
  • 31 Sitrin RG, Todd RF, Mizukami IF, Gross TJ, Shollenberger SB, Gyetko MR. Cytokine-specific regulation of urokinase receptor (CD87) expression by U937 mononuclear phagocytes. Blood 1994; 84: 1268-75.
  • 32 Chavakis T, Kanse SM, Yutzy B, Lijnen HR, Preissner KT. Vitronectin concentrates proteolytic activity on the cell surface and extracellular matrix by trapping soluble urokinase receptor-urokinase complexes. Blood 1998; 91: 2305-12.
  • 33 Fazioli F, Resnati M, Sidenius N, Higashimoto Y, Appella E, Blasi F. A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J 1997; 16: 7279-86.
  • 34 Nykjaer A, Christensen EI, Vorum H, Hager H, Petersen CM, Roigaard H, Min HY, Villhardt F, Moller LB, Kornfeld S, Gliemann J. Mannose 6-phosphate/insulin-like growth factor-II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J Cell Biol 1998; 141: 815-28.
  • 35 Stockmann A, Hess S, Declerck P, Timpl R, Preissner KT. Multimeric vitronectin. Identification and characterization of conformation-dependent self-association of the adhesive protein. J Biol Chem 1993; 268: 22874-82.
  • 36 Kanse SM, Wijelath E, Kanthou C, Newman P, Kakkar VV. The proliferative responsiveness of human vascular smooth muscle cells to endothelin correlates with endothelin receptor density. Lab Invest 1995; 72: 376-82.
  • 37 Kanse SM, Kost C, Wilhelm OG, Andreasen PA, Preissner KT. The urokinase receptor is a major vitronectin binding protein on endothelial cells. Exp Cell Res 1996; 224: 344-53.
  • 38 Kanse SM, Benzakour O, Kanthou C, Kost C, Lijnen HR, Preissner KT. Induction of vascular SMC proliferation by urokinase indicates a novel mechanism of action in vasoproliferative disorders. Arterioscler Thromb Vasc Biol 1997; 17: 2848-54.
  • 39 Limongi P, Resnati M, Hernandez-Marrero L, Cremona O, Blasi F, Fazioli F. Biosynthesis and apical localization of the urokinase receptor in polarized MDCK epithelial cells. FEBS Lett 1995; 369: 207-11.
  • 40 Chang YS, Munn LL, Hillsley MV, Dull RO, Yuan J, Lakshminarayanan S, Gardner TW, Jain RK, Tarbell JM. Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Micro-vasc Res 2000; 59: 265-77.
  • 41 Wilhelm OG, Wilhelm S, Escott GM, Lutz V, Magdolen V, Schmitt M, Rifkin DB, Wilson EL, Graeff H, Brunner G. Cellular glycosylphosphatidylinositol-specific phospholipase D regulates urokinase receptor shedding and cell surface expression. J Cell Physiol 1999; 180: 225-35.
  • 42 Hoyer-Hansen G, Ronne E, Solberg H, Behrendt N, Ploug M, Lund LR, Ellis V, Dano K. Urokinase plasminogen activator cleaves its cell surface receptor releasing the ligand-binding domain. J Biol Chem 1992; 267: 18224-9.
  • 43 Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA 1985; 82: 4939-43.
  • 44 Pyke C, Eriksen J, Solberg H, Nielsen BS, Kristensen P, Lund LR, Dano K. An alternatively spliced variant of mRNA for the human receptor for urokinase plasminogen activator. FEBS Lett 1993; 326: 69-74.
  • 45 Nykjaer A, Conese M, Christensen EL, Olson D, Cremona O, Gliemann J, Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J 1997; 16: 2610-20.
  • 46 O’Brien KD, Pineda C, Chiu WS, Bowen R, Deeg MA. Glycosylphosphatidylinositol-specific phospholipase D is expressed by macrophages in human atherosclerosis and colocalizes with oxidation epitopes. Circulation 1999; 99: 2876-82.
  • 47 Loppnow H, Bil R, Hirt S, Schonbeck U, Herzberg M, Werdan K, Rietschel ET, Brandt E, Flad HD. Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood 1998; 91: 134-41.
  • 48 Herbert JM, Lamarche I, Carmeliet P. Urokinase and tissue-type plasminogen activator are required for the mitogenic and chemotactic effects of bovine fibroblast growth factor and platelet-derived growth factor-BB for vascular smooth muscle cells. J Biol Chem 1997; 272: 23585-691.
  • 49 Tarui T, Mazar AP, Cines DB, Takada Y. Urokinase receptor (uPAR/ CD87) is a ligand for integrins and mediates cell-cell interaction. J Biol Chem 2001; 276: 3983-90.