Thromb Haemost 1999; 82(02): 781-786
DOI: 10.1055/s-0037-1615911
Research Article
Schattauer GmbH

Regulation of Leukocyte-Endothelium Interaction by Fibrinogen

Dario C. Altieri
1   Department of Pathology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Dezember 2017 (online)

Introduction

The binding of neutrophils and mononuclear cells to vascular endothelium is an essential prerequisite in maintaining effective immune-inflammatory responses. This process has been unraveled as a regulated “adhesion cascade” that involves the expression of multiple adhesion receptors of the integrin, selectin, and immunoglobulin gene superfamilies on both cell types. These adhesive interactions are modulated by disparate environmental signals, ranging from inflammatory and chemotactic cytokines to changes in shear force at the vessel wall. Although of paramount importance in the preservation of immune-inflammatory surveillance, dysregulation of leukocyte-endothelium interaction also constitutes one of the earliest molecular events in the pathogenesis of such vascular diseases as atherosclerosis. This dysregulation leads to the aberrant accumulation of mononuclear cells in the damaged intima.

Recently, the interaction of fibrinogen with vascular cells has emerged as an alternate mechanism for recruiting leukocytes at the site of vascular injury. Although the role of fibrinogen as a risk factor for atherosclerosis has long been recognized, this pathway has been associated with complex mechanisms of intercellular adhesion, signal transduction, second-messenger generation, and modulation of gene expression in vascular cells. These studies have revealed a multifaceted and far-reaching molecular link between inflammation and hemostasis–a link that is of potential therapeutic relevance for the pathogenesis of vascular diseases.

 
  • References

  • 1 Colvin RB, Johnson RA, Mihm Jr MC, Dvorak HF. Role of the clotting system in cell-mediated hypersensitivity I. Fibrin deposition in delayed skin reactions in man. J Exp Med 1973; 138: 686-698.
  • 2 Colvin RB, Dvorak HF. Fibrinogen/fibrin on the surface of macrophages: detection, distribution, binding requirements, and possible role in macrophage adherence phenomena. J Exp Med 1975; 142: 1377-1390.
  • 3 Sherman LA, Lee J. Specific binding of soluble fibrin to macrophages. J Exp Med 1977; 145: 76-85.
  • 4 Hogg N. Human monocytes are associated with the formation of fibrin. J Exp Med 1983; 157: 473-485.
  • 5 Niewiarowski S, Goldstein S. Interaction of cultured human fibroblasts with fibrin: modification by drugs and aging in vitro. J Lab Clin Med 1973; 82: 605-610.
  • 6 Remuzzi G, Marchesi E, de Gaetano G, Donati MB. Abnormal tissue repair in Glanzmann’s thrombasthenia [letter]. Lancet 1977; 1: 374-375.
  • 7 Altieri DC, Bader R, Mannucci PM, Edgington PM. Oligospecificity of the cellular adhesion receptor Mac-1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol 1988; 107: 1893-1900.
  • 8 Trezzini C, Jungi TW, Kuhnert P, Peterhans E. Fibrinogen association with human monocytes: evidence for constitutive expression of fibrinogen receptors and for involvement of Mac-1 (CD18, CR3) in the binding. Biochem Biophys Res Commun 1988; 156: 477-484.
  • 9 Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, Loike JD. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci USA 1988; 85: 7734-7738.
  • 10 Gustafson EJ, Lukasiewicz H, Wachtfogel YT, Norton KJ, Schmaier AH, Niewiarowski S, Colman RW. High molecular weight kininogen inhibits fibrinogen binding to cytoadhesins of neutrophils and platelets. J Cell Biol 1989; 109: 377-387.
  • 11 Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1990; 75: 1037-1050.
  • 12 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25.
  • 13 Lee JO, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 1995; 80: 631-638.
  • 14 Qu A, Leahy DJ. Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, αLβ2) integrin. Proc Natl Acad Sci USA 1995; 92: 10277-10281.
  • 15 Michishita M, Videm V, Arnaout MA. A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 1993; 72: 857-867.
  • 16 Diamond MS, Garcia-Aguilar J, Bickford JK, Corbi AL, Springer TA. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol 1993; 120: 1031-1043.
  • 17 McGuire SL, Bajt ML. Distinct ligand binding sites in the I domain of integrin αMβ2 that differentially affect a divalent cation-dependent conformation. J Biol Chem 1995; 270: 25866-25871.
  • 18 Kamata T, Wright R, Takada Y. Critical threonine and aspartic acid residues within the I domains of β2 integrins for interaction with intercellular adhesion molecule 1 (ICAM-1) and C3bi. J Biol Chem 1995; 270: 12531-12535.
  • 19 Ueda T, Rieu P, Brayer J, Arnaout MA. Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc Natl Acad Sci USA 1994; 91: 10680-10684.
  • 20 Zhou L, Lee DH, Plescia J, Lau CY, Altieri DC. Differential lig-and binding specificities of recombinant CD11b/CD18 integrin I-domain. J Biol Chem 1994; 269: 17075-17079.
  • 21 Altieri DC, Mannucci PM, Capitanio AM. Binding of fibrinogen to human monocytes. J Clin Invest 1986; 78: 968-976.
  • 22 Altieri DC, Agbanyo FR, Plescia J, Ginsberg MH, Edgington TS, Plow EF. A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem 1990; 265: 12119-12122.
  • 23 Altieri DC, Plescia J, Plow EF. The structural motif glycine 190-valine 202 of the fibrinogen γ chain interacts with CD11b/CD18 integrin (αMβ2, Mac-1) and promotes leukocyte adhesion. J Biol Chem 1993; 268: 1847-1853.
  • 24 Ugarova TP, Solovjov DA, Zhang L, Loukinov DI, Yee VC, Medved LV, Plow EF. Identification of a novel recognition sequence for integrin alphaM beta2 within the gamma-chain of fibrinogen. J Biol Chem 1998; 273: 22519-22527.
  • 25 Born GV, Kratzer MA. Source and concentration of extracellular adenosine triphosphate during hemostasis in rats, rabbits and man. J Physiol (Lond) 1984; 354: 419-429.
  • 26 Balazovich KJ, Boxer LA. Extracellular adenosine nucleotides stimulate protein kinase C activity and human neutrophil activation. J Immunol 1990; 144: 631-637.
  • 27 Freyer DR, Boxer LA, Axtell RA, Todd 3rd RF. Stimulation of human neutrophil adhesive properties by adenine nucleotides. J Immunol 1988; 141: 580-586.
  • 28 Altieri DC, Wiltse WL, Edgington TS. Signal transduction initiated by extracellular nucleotides regulates the high affinity ligand recognition of the adhesive receptor CD11b/CD18. J Immunol. 1990; 662-670.
  • 29 Wright SD, Meyer BC. Phorbol esters cause sequential activation and deactivation of complement receptors on polymorphonuclear leukocytes. J Immunol 1986; 136: 1759-1764.
  • 30 Altieri DC. Occupancy of CD11b/CD18 (Mac-1) divalent ion binding site(s) induces leukocyte adhesion. J Immunol 1991; 147: 1891-1898.
  • 31 Miller LJ, Bainton DF, Borregaard N, Springer TA. Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J Clin Invest 1987; 80: 535-544.
  • 32 Buyon JP, Abramson SB, Philips MR, Slade SG, Ross GD, Weissman G, Winchester RJ. Dissociation between increased surface expression of gp165/95 and homotypic neutrophil aggregation. J Immunol 1988; 140: 3156-3160.
  • 33 Vedder NB, Harlan JM. Increased surface expression of CD11b/CD18 (Mac-1) is not required for stimulated neutrophil adherence to cultured endothelium. J Clin Invest 1988; 81: 676-682.
  • 34 Altieri DC, Edgington TS. A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD11b/CD18 (Mac-1). J Immunol 1988; 141: 2656-2660.
  • 35 Simon DI, Xu H, Ortlepp S, Rogers C, Rao NK. 7E3 monoclonal antibody directed against the platelet glycoprotein IIb/IIIa cross-reacts with the leukocyte integrin Mac-1 and blocks adhesion to fibrinogen and ICAM-1. Arterioscler Thromb Vasc Biol 1997; 17: 528-535.
  • 36 Landis RC, Bennett RI, Hogg N. A novel LFA-1 activation epitope maps to the I domain. J Cell Biol 1993; 120: 1519-1527.
  • 37 Plescia J, Conte MS, VanMeter G, Ambrosini G, Altieri DC. Molecular identification of the cross-reacting epitope on αMβ2 integrin I domain recognized by anti-αIIbβ3 monoclonal antibody 7E3 and its involvement in leukocyte adherence. J Biol Chem 1998; 273: 20372-20377.
  • 38 Diamond MS, Springer TA. A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J Cell Biol 1993; 120: 545-556.
  • 39 Elemer GS, Edgington TS. Monoclonal antibody to an activation neoepitope of αMβ2 inhibits multiple αMβ2 functions. J Immunol 1994; 152: 5836-5844.
  • 40 De Nichilo MO, Shafren DR, Carter WM, Berndt MC, Burns GF, Boyd AW. A common epitope on platelet integrin αIIbβ3 (glycoprotein IIbIIIa; CD41b/CD61) and αMβ2 (Mac-1; CDIIb/CD18) detected by a monoclonal antibody. J Immunol 1996; 156: 284-288.
  • 41 McRitchie DI, Girotti MJ, Glynn MF, Goldberg JM, Rotstein OD. Effect of systemic fibrinogen depletion on intraabdominal abscess formation. J Lab Clin Med 1991; 118: 48-55.
  • 42 Wu X, Helfrich MH, Horton MA, Feigen LP, Lefkowith JB. Fibrinogen mediates platelet-polymorphonuclear leukocyte cooperation during immune-complex glomerulonephritis in rats. J Clin Invest 1994; 94: 928-936.
  • 43 Tang L, Eaton JW. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 1993; 178: 2147-2156.
  • 44 Tang L, Ugarova TP, Plow EF, Eaton JW. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 1996; 97: 1329-1334.
  • 45 Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA 1998; 95: 8841-8846.
  • 46 Trezzini C, Schüepp B, Maly FE, Jungi TW. Evidence that exposure to fibrinogen or to antibodies directed against Mac-1 (CD11b/CD18; CR3) modulates human monocyte effector functions. Br J Haematol 1991; 77: 16-24.
  • 47 Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright SD. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 1989; 109: 1341-1349.
  • 48 Fan ST, Edgington TS. Coupling of the adhesive receptor CD11b/CD18 to functional enhancement of effector macrophage tissue factor response. J Clin Invest 1991; 87: 50-57.
  • 49 Fan ST, Edgington TS. Integrin regulation of leukocyte inflammatory functions: CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J Immunol 1993; 150: 2972-2980.
  • 50 Kreuzer J, Denger S, Schmidts A, Jahn L, Merten M, von Hodenberg E. Fibrinogen promotes monocyte adhesion via a protein kinase C dependent mechanism. J Mol Med 1996; 74: 161-165.
  • 51 Perez RL, Roman J. Fibrin enhances the expression of IL-1β by human peripheral blood mononuclear cells: implications in pulmonary inflammation. J Immunol 1995; 154: 1879-1887.
  • 52 Sitrin RG, Pan PM, Srikanth S, Todd 3rd RF. Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes. J Immunol 1998; 161: 1462-1470.
  • 53 Ng-Sikorski J, Andersson R, Patarroyo M, Andersson T. Calcium signaling capacity of the CD11b/CD18 integrin on human neutrophils. Exp Cell Res 1991; 195: 504-508.
  • 54 Altieri DC, Stamnes SJ, Gahmberg CG. Regulated Ca2+ signaling through leukocyte CD11b/CD18 integrin. Biochem J. 1992; 288 (Suppl. 02) 465-473.
  • 55 Kuijpers TW, Harlan JM. Monocyte-endothelial interactions: insights and questions. J Lab Clin Med 1993; 122: 641-651.
  • 56 Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068-2101.
  • 57 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301-314.
  • 58 Bevilacqua MP, Nelson RM. Selectins. J Clin Invest 1993; 91: 379-387.
  • 59 Smith CW. Transendothelial migration. Curr Top Microbiol Immunol 1993; 184: 201-212.
  • 60 Anderson DC, Schmalsteig FC, Finegold MJ, Hughes BJ, Rothlein R, Miller LJ, Kohl S, Tosi MF, Jacobs RL, Waldrop TC, Goldman AS, Shearer WT, Springer TA. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis 1985; 152: 668-689.
  • 61 Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA. Heterogeneous mutations in the β subunit common to LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 1987; 50: 193-202.
  • 62 Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425-434.
  • 63 Simmons D, Makgoba MW, Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 1988; 331: 624-627.
  • 64 Pober JS, Gimbrone Jr MA, Lapierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 1986; 137: 1893-1896.
  • 65 Dustin ML, Springer TA. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 1989; 341: 619-624.
  • 66 Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A. The major human rhinovirus receptor is ICAM-1. Cell 1989; 56: 839-847.
  • 67 Staunton DE, Dustin ML, Erickson HP, Springer TA. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 1990; 61: 243-254.
  • 68 Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 1989; 341: 57-59.
  • 69 Berendt AR, McDowall A, Craig AG, Bates PA, Sternberg MJ, Marsh K, Newbold CI, Hogg N. The binding site on ICAM-1 for plasmodium falsciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1 binding site. Cell 1992; 68: 71-81.
  • 70 Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE, Altieri DC. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 1993; 73: 1423-1434.
  • 71 Shetty S, Kumar A, Pueblitz S, Emri S, Gungen Y, Johnson AR, Idell S. Fibrinogen promotes adhesion of monocytic to human mesothelioma cells. Thromb Haemost 1996; 75: 782-790.
  • 72 van de Stolpe A, Jacobs N, Hage WJ, Tertoolen L, van Kooyk Y, Novakova IR, de Witte T. Fibrinogen binding to ICAM-1 on EA.hy 926 endothelial cells is dependent on an intact cytoskeleton. Thromb Haemost 1996; 75: 182-189.
  • 73 Hicks RC, Golledge J, Mir-Hasseine R, Powell JT. Vasoactive effects of fibrinogen on saphenous vein. Nature 1996; 379: 818-820.
  • 74 Languino LR, Duperray A, Joganic KJ, Fornaro M, Thornton GB, Altieri DC. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci USA 1995; 92: 1505-1509.
  • 75 Sriramarao P, Languino LR, Altieri DC. Fibrinogen mediates leukocyte-endothelium bridging in vivo at low shear forces. Blood 1996; 88: 3416-3423.
  • 76 Altieri DC, Duperray A, Plescia J, Thornton GB, Languino LR. Structural recognition of a novel fibrinogen γ chain sequence (117-133) by intercellular adhesion molecule-1 mediates leukocyte-endothelium interaction. J Biol Chem 1995; 270: 696-699.
  • 77 Ugarova TP, Budzynski AZ, Shattil SJ, Ruggeri ZM, Ginsberg MH, Plow EF. Conformational changes in fibrinogen elicited by its interaction with platelet membrane glycoprotein GPIIb-IIIa. J Biol Chem 1993; 268: 21080-21087.
  • 78 Duperray A, Languino LR, Plescia J, McDowall A, Hogg N, Craig AG, Berendt AR, Altieri DC. Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyte-endothelium bridging. J Biol Chem 1997; 272: 435-441.
  • 79 Almenar-Queralt A, Duperray A, Miles LA, Felez J, Altieri DC. Apical topography and modulation of ICAM-1 expression on activated endothelium. Am J Pathol 1995; 147: 1278-1288.
  • 80 Belch J, McLaren M, Hanslip J, Hill A, Davidson D. The white blood cell and plasma fibrinogen in thrombotic stroke: a significant correlation. Int Angiol 1998; 17: 120-124.
  • 81 Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998; 279: 1477-1482.
  • 82 Bini A, Fenoglio Jr JJ, Mesa-Tejada R, Kudryk B, Kaplan KL. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis: use of monoclonal antibodies. Arteriosclerosis 1989; 9: 109-121.
  • 83 van der Wal AC, Das PK, Tigges AJ, Becker AE. Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions. Am J Pathol 1992; 141: 1427-1433.
  • 84 Poston RN, Haskard DO, Coucher JR, Gall NP, Johnson-Tidey RR. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol 1992; 140: 665-673.
  • 85 Duplaa C, Couffinhal T, Labat L, Fawaz J, Moreau C, Bietz I, Bonnet J. Monocyte adherence to endothelial cells in patients with atherosclerosis: relationships with risk factors. Eur J Clin Invest 1993; 23: 474-479.
  • 86 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-809.
  • 87 Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the β2-integrin CD11b/CD18. Blood 1996; 88: 146-157.
  • 88 Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest 1997; 100: 2085-2093.
  • 89 Hatton MW, Southward SM, Ross-Ouellet B, DeReske M, Blajchman MA, Richardson M. An increased uptake of prothrombin, antithrombin, and fibrinogen by the rabbit balloon-deendothelialized aorta surface in vivo is maintained until reen-dothelialization is complete. Arterioscler Thromb Vasc Biol 1996; 16: 1147-1155.
  • 90 Frebelius S, Isaksson S, Swedenborg J. Thrombin inhibition by antithrombin III on the subendothelium is explained by the iso-form AT beta. Arterioscler Thromb Vasc Biol 1996; 16: 1292-1297.
  • 91 Rogers C, Edelman ER, Simon DI. A mAb to the beta2-leukocyte integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc Natl Acad Sci USA 1998; 95: 10134-10139.