Semin Respir Crit Care Med 2018; 39(02): 172-180
DOI: 10.1055/s-0037-1615798
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Immunosuppression: Have We Learnt Anything?

Ramsey R. Hachem
1   Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, Missouri
› Author Affiliations
Further Information

Publication History

Publication Date:
26 March 2018 (online)

Abstract

Outcomes after lung transplantation remain disappointing because there is a high incidence of chronic lung allograft dysfunction (CLAD), which typically follows a progressive clinical course and often results in allograft failure and death. Chronic rejection is considered the predominant cause of CLAD. Thus, optimal immunosuppression has been viewed as having the potential to prevent CLAD and improve survival after lung transplantation. Numerous clinical trials have been conducted investigating the efficacy and safety of various immunosuppressive agents. Many studies have been small and single-center clinical trials but some have been international and multicenter trials enrolling more than 300 patients. This review focuses on clinical trials of immunosuppression conducted in lung transplantation and points out strengths and limitations of the various studies. Ultimately, the findings of these clinical trials explain the current state of practice in lung transplantation and identify gaps in knowledge that require additional study. Finally, there is an ongoing need for carefully designed and conducted clinical trials to improve clinical practice and outcomes after lung transplantation.

 
  • References

  • 1 Chambers DC, Yusen RD, Cherikh WS. , et al; International Society for Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult lung and heart-lung transplantation report – 2017; focus theme: allograft ischemic time. J Heart Lung Transplant 2017; 36 (10) 1047-1059
  • 2 Finlen Copeland CA, Snyder LD, Zaas DW, Turbyfill WJ, Davis WA, Palmer SM. Survival after bronchiolitis obliterans syndrome among bilateral lung transplant recipients. Am J Respir Crit Care Med 2010; 182 (06) 784-789
  • 3 Vermuelen KM, van der Bij W, Erasmus ME, TenVergert EM. Long-term health-related quality of life after lung transplantation: different predictors for different dimensions. J Heart Lung Transplant 2007; 26 (02) 188-193
  • 4 Künsebeck HW, Kugler C, Fischer S. , et al. Quality of life and bronchiolitis obliterans syndrome in patients after lung transplantation. Prog Transplant 2007; 17 (02) 136-141
  • 5 Burton CM, Iversen M, Carlsen J. , et al. Acute cellular rejection is a risk factor for bronchiolitis obliterans syndrome independent of post-transplant baseline FEV1. J Heart Lung Transplant 2009; 28 (09) 888-893
  • 6 Khalifah AP, Hachem RR, Chakinala MM. , et al. Minimal acute rejection after lung transplantation: a risk for bronchiolitis obliterans syndrome. Am J Transplant 2005; 5 (08) 2022-2030
  • 7 Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA. Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med 2008; 177 (09) 1033-1040
  • 8 Witt CA, Gaut JP, Yusen RD. , et al. Acute antibody-mediated rejection after lung transplantation. J Heart Lung Transplant 2013; 32 (10) 1034-1040
  • 9 Jaramillo A, Smith CR, Maruyama T, Zhang L, Patterson GA, Mohanakumar T. Anti-HLA class I antibody binding to airway epithelial cells induces production of fibrogenic growth factors and apoptotic cell death: a possible mechanism for bronchiolitis obliterans syndrome. Hum Immunol 2003; 64 (05) 521-529
  • 10 Girnita AL, Duquesnoy R, Yousem SA. , et al. HLA-specific antibodies are risk factors for lymphocytic bronchiolitis and chronic lung allograft dysfunction. Am J Transplant 2005; 5 (01) 131-138
  • 11 Le Pavec J, Suberbielle C, Lamrani L. , et al. De-novo donor-specific anti-HLA antibodies 30 days after lung transplantation are associated with a worse outcome. J Heart Lung Transplant 2016; 35 (09) 1067-1077
  • 12 Tikkanen JM, Singer LG, Kim SJ. , et al. De novo DQ donor-specific antibodies are associated with chronic lung allograft dysfunction after lung transplantation. Am J Respir Crit Care Med 2016; 194 (05) 596-606
  • 13 Daud SA, Yusen RD, Meyers BF. , et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2007; 175 (05) 507-513
  • 14 Huang HJ, Yusen RD, Meyers BF. , et al. Late primary graft dysfunction after lung transplantation and bronchiolitis obliterans syndrome. Am J Transplant 2008; 8 (11) 2454-2462
  • 15 Khalifah AP, Hachem RR, Chakinala MM. , et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 2004; 170 (02) 181-187
  • 16 Kumar D, Erdman D, Keshavjee S. , et al. Clinical impact of community-acquired respiratory viruses on bronchiolitis obliterans after lung transplant. Am J Transplant 2005; 5 (08) 2031-2036
  • 17 Davis Jr RD, Lau CL, Eubanks S. , et al. Improved lung allograft function after fundoplication in patients with gastroesophageal reflux disease undergoing lung transplantation. J Thorac Cardiovasc Surg 2003; 125 (03) 533-542
  • 18 Abbassi-Ghadi N, Kumar S, Cheung B. , et al. Anti-reflux surgery for lung transplant recipients in the presence of impedance-detected duodenogastroesophageal reflux and bronchiolitis obliterans syndrome: a study of efficacy and safety. J Heart Lung Transplant 2013; 32 (06) 588-595
  • 19 Palmer SM, Miralles AP, Lawrence CM, Gaynor JW, Davis RD, Tapson VF. Rabbit antithymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study. Chest 1999; 116 (01) 127-133
  • 20 Hartwig MG, Snyder LD, Appel III JZ. , et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant 2008; 27 (05) 547-553
  • 21 Brock MV, Borja MC, Ferber L. , et al. Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant 2001; 20 (12) 1282-1290
  • 22 Lischke R, Simonek J, Davidová R. , et al. Induction therapy in lung transplantation: initial single-center experience comparing daclizumab and antithymocyte globulin. Transplant Proc 2007; 39 (01) 205-212
  • 23 Ciancio G, Burke GW, Gaynor JJ. , et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. Transplantation 2004; 78 (03) 426-433
  • 24 Ciancio G, Burke GW, Gaynor JJ. , et al. A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. Transplantation 2005; 80 (04) 457-465
  • 25 Hanaway MJ, Woodle ES, Mulgaonkar S. , et al; INTAC Study Group. Alemtuzumab induction in renal transplantation. N Engl J Med 2011; 364 (20) 1909-1919
  • 26 McCurry KR, Iacono A, Zeevi A. , et al. Early outcomes in human lung transplantation with Thymoglobulin or Campath-1H for recipient pretreatment followed by posttransplant tacrolimus near-monotherapy. J Thorac Cardiovasc Surg 2005; 130 (02) 528-537
  • 27 Jaksch P, Ankersmit J, Scheed A. , et al. Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study. Am J Transplant 2014; 14 (08) 1839-1845
  • 28 Snell GI, Westall GP, Levvey BJ. , et al; ATG Study Investigators. A randomized, double-blind, placebo-controlled, multicenter study of rabbit ATG in the prophylaxis of acute rejection in lung transplantation. Am J Transplant 2014; 14 (05) 1191-1198
  • 29 Nelems JM, Rebuck AS, Cooper JD, Goldberg M, Halloran PF, Vellend H. Human lung transplantation. Chest 1980; 78 (04) 569-573
  • 30 Veith FJ, Koerner SK. Problems in the management of human lung transplant patients. Vasc Surg 1974; 8 (05) 273-282
  • 31 Lima O, Cooper JD, Peters WJ. , et al. Effects of methylprednisolone and azathioprine on bronchial healing following lung autotransplantation. J Thorac Cardiovasc Surg 1981; 82 (02) 211-215
  • 32 Toronto Lung Transplant Group. Unilateral lung transplantation for pulmonary fibrosis. N Engl J Med 1986; 314 (18) 1140-1145
  • 33 Griffith BP, Bando K, Hardesty RL. , et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. Transplantation 1994; 57 (06) 848-851
  • 34 Keenan RJ, Konishi H, Kawai A. , et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg 1995; 60 (03) 580-584 , discussion 584–585
  • 35 Treede H, Klepetko W, Reichenspurner H. , et al; Munich and Vienna Lung Transplant Group. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols. J Heart Lung Transplant 2001; 20 (05) 511-517
  • 36 Zuckermann A, Reichenspurner H, Birsan T. , et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg 2003; 125 (04) 891-900
  • 37 Hachem RR, Yusen RD, Chakinala MM. , et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant 2007; 26 (10) 1012-1018
  • 38 Treede H, Glanville AR, Klepetko W. , et al; European and Australian Investigators in Lung Transplantation. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant 2012; 31 (08) 797-804
  • 39 Sollinger HW. ; U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60 (03) 225-232
  • 40 The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation 1996; 61 (07) 1029-1037
  • 41 Kobashigawa J, Miller L, Renlund D. , et al; Mycophenolate Mofetil Investigators. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Transplantation 1998; 66 (04) 507-515
  • 42 Ross DJ, Waters PF, Levine M, Kramer M, Ruzevich S, Kass RM. Mycophenolate mofetil versus azathioprine immunosuppressive regimens after lung transplantation: preliminary experience. J Heart Lung Transplant 1998; 17 (08) 768-774
  • 43 Palmer SM, Baz MA, Sanders L. , et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation 2001; 71 (12) 1772-1776
  • 44 McNeil K, Glanville AR, Wahlers T. , et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation 2006; 81 (07) 998-1003
  • 45 Kahan BD, Gibbons S, Tejpal N, Stepkowski SM, Chou T-C. Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances of normal human peripheral blood lymphocytes in vitro. Transplantation 1991; 51 (01) 232-239
  • 46 Kahan BD, Podbielski J, Napoli KL, Katz SM, Meier-Kriesche H-U, Van Buren CT. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 1998; 66 (08) 1040-1046
  • 47 Kahan BD. ; The Rapamune US Study Group. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. Lancet 2000; 356 (9225): 194-202
  • 48 MacDonald AS. ; RAPAMUNE Global Study Group. A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 2001; 71 (02) 271-280
  • 49 Nashan B. Review of the proliferation inhibitor everolimus. Expert Opin Investig Drugs 2002; 11 (12) 1845-1857
  • 50 Azzola A, Havryk A, Chhajed P. , et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. Transplantation 2004; 77 (02) 275-280
  • 51 Simler NR, Howell DC, Marshall RP. , et al. The rapamycin analogue SDZ RAD attenuates bleomycin-induced pulmonary fibrosis in rats. Eur Respir J 2002; 19 (06) 1124-1127
  • 52 King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation 2003; 75 (09) 1437-1443
  • 53 Groetzner J, Kur F, Spelsberg F. , et al; Munich Lung Transplant Group. Airway anastomosis complications in de novo lung transplantation with sirolimus-based immunosuppression. J Heart Lung Transplant 2004; 23 (05) 632-638
  • 54 Snell GI, Valentine VG, Vitulo P. , et al; RAD B159 Study Group. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant 2006; 6 (01) 169-177
  • 55 Bhorade S, Ahya VN, Baz MA. , et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med 2011; 183 (03) 379-387
  • 56 Glanville AR, Aboyoun C, Klepetko W. , et al; European and Australian Investigators in Lung Transplantation. Three-year results of an investigator-driven multicenter, international, randomized open-label de novo trial to prevent BOS after lung transplantation. J Heart Lung Transplant 2015; 34 (01) 16-25
  • 57 Strueber M, Warnecke G, Fuge J. , et al. Everolimus versus mycophenolate mofetil de novo after lung transplantation: a prospective, randomized, open-label trial. Am J Transplant 2016; 16 (11) 3171-3180